不規則騒音のレベル変動に関する統計的研究(I) : 不規則騒音確率密度分布の陽表現
スポンサーリンク
概要
- 論文の詳細を見る
We are well aware of the fact that in almost all of the random noise measurement we face the measurement of frequency distribution of level fluctuation of random noise. More explicitly, when the instantaneous readings of a sound level meter are recorded at every five seconds (df. JIS Z 8731-1957), infinitely many different types of frequency distribution of random noise fluctuation such as city noise are experimentally found. However, the statistical methods of analysing unificatively these experimental results of frequency distribution have not yet been introduced. In previous papers, a joint characteristic function in the form of Hankel transform applicable as a postern to probability problem of many correlative physical quantities fluctuating only in positive region was proposed. Then it was demonstrated that this function is more effective for the analysis of the random noise current than the characteristics function of Fourier or Laplace type which has been used so far. In this paper, the problem of what the fundamental and universal property will become important when we try to obtain the general explicit expression of probability density distribution of random noise. First, the relation between a general statistical treatment of the frequency distribution of random noise such as city noise and the probability method using the characteristics function of Hankel type is cleared up. Then, a special case of interest with a physical quantity as mentioned above is treated, and explicit expressions of the probability density distribution of random noise in the forms of statistical Laguere expansion series or other expansion series are presented under the statistical method using the characteristic function of Hankel type. We must call our attention to the fact that the individual character in the statistical property of each random noise is reflected in two parameters and each expansion coefficient of the probability distribution. Further, from the above point of view, it has been pointed out that a lognormal probability distribution can be approximately derived as a universal expression of the probability distribution of random noise. Finally, detailed experimental considerations of city noise enough to corroborate the above theories are give in the following three cases: (a) probability expression in the form of statistical Laguerre expansion series, (b) an approximation to the gamma distribution, (c) a universal approximation to the lognormal distribution. The statistical method described in this paper is also applicable to other wide fields of measurement on random phenomena, since the probability variables defined only in positive region are fundamental.
- 社団法人日本音響学会の論文
- 1965-09-30
著者
関連論文
- 騒音予測における評価量L_α(α:%)とL_<eq>の対比について : 物理的意味からみた一見解
- 任意UAP関数群による雑音model形成の新たな一試み : II.実験的考察(Digital Simulation)
- 任意UAP関数群による雑音model形成の新たな一試み : I.理論的考察
- 騒音変動波形の激しさに対する統計的評価の実験的一考察
- 不規則騒音のレベル変動に関する統計的研究(VII) : 有限メモリ整流形非線形変換器を通った任意不規則騒音波の統一理論
- 標本化不規則信号の強度変動確率密度関数に及ぼす高次相関効果
- 不規則騒音のレベル変動に関する統計的研究(VI) : 白色騒音モデルの新たな形成とそのディジタル・シミュレーションによる実験的確認
- 不規則騒音のレベル変動に関する統計的研究(V) : 条件付確率分布の簡便な図式評価法
- 不規則騒音のレベル変動に関する統計的研究(IV) : 一次相関情報のある実用的検出方法
- 不規則騒音のレベル変動に関する統計的研究(III) : 不規則騒音の条件付確率密度分布陽表現
- 不規則騒音のレベル変動に関する統計的研究(II) : 騒音結合分布に及ぼす一般相関効果とある種の一次相関を用いた騒音中の弱信号検出
- 不規則騒音のレベル変動に関する統計的研究(I) : 不規則騒音確率密度分布の陽表現
- 統計的非線形制御における高次等価表現の一般的考察(II) : 自動制御