Development of a New Crack Identification Technique Based on Near-Tip Singular Electrothermal Field Measured by Lock-in Infrared Thermography
スポンサーリンク
概要
- 論文の詳細を見る
A new thermographic NDT technique was proposed, in which singular electrothermal field near crack tips under the application of periodically modulated electric current was measured using an infrared thermography combined with lock-in data processing technique. Experimental investigations were made on the resolution and the applicability in the identification of through-thickness artificial cracks and fatigue cracks embedded in steel and aluminum alloy plate samples. Modulated electric current was applied to the cracked sample by an induction coil. Lock-in thermal images synchronized to the reference current modulation signal were taken by the lock-in thermography. Significant singular electrothermal field was observed at the crack tip in the lock-in thermal image. The fatigue cracks as well as artificial cracks were found to be sensitively identified by the proposed technique in good resolution compared with the singular method using a conventional thermographic temperature measurement.
- 一般社団法人日本機械学会の論文
- 2001-10-15
著者
-
KUBO Shiro
Department of Mechanical Engineering and Systems, Graduate School of Engineering, Osaka University
-
SAKAGAMI Takahide
Department of Mechanical Engineering, Osaka University
-
Kubo Shiro
Department Of Mechanical Engineering And Systems Graduate School Of Engineering Osaka University
-
Sakagami Takahide
Department Of Mechanical Engineering And Systems Graduate School Of Engineering Osaka University
-
Sakagami Takahide
Department Of Mechanical Engineering & Systems Osaka University
関連論文
- Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage : 2nd Report, Fatigue Crack Growth Behavior
- Near-Threshold Fatigue Crack Growth Behavior of SUS304 Steel at High Temperatures Using Interferometric Strain/Displacement Gage : 1st Report, Crack Closure Behavior
- Quantitative Measurement of Two-Dimensional Inclined Cracks by the Electric-Potential CT Method with Multiple Current Applications
- Experimental Study on Applicability of Passive Electric Potential CT Method for Identification of Three-Dimensional Surface Crack
- An Experimental Study on Applicability of Passive Electric Potential CT Method to Crack Identification(Advanced Technology of Experimental Mechanics)
- SA-07-2(099) Loading Frequency Effect on Near-Threshold and Sub-Threshold Fatigue Crack Growth in SUS304 Steel at an Elevated Temperature(Flaw Assessment at Elevated Temperature 2)
- IDENTIFICATION OF AN INTERFACE CRACK IN BONDED DISSIMILAR MATERIALS FROM ELECTRIC POTENTIAL DISTRIBUTION
- Evaluation of the J-Integral Range of Fatigue Crack Emanating from Notches by Simple Estimation Formulae
- Investigation on Path-Integral Expression of the J-Integral Range Using Numerical Simulations of Fatigue Crack Growth
- INVERSE PROBLEMS IN SOLID MECHANICS AND RELEVANT FIELDS
- Experimental Stress Separation Technique Using Thermoelasticity and Photoelasticity and Its Application to Fracture Mechanics(Advanced Technology of Experimental Mechanics)
- Inverse Problems Related to the Mechanics and Fracture of Solids and Structures
- Development of a New Diagnosis Method for Incipient Caries in Human Teeth Based on Thermal Images under Pulse Heating
- Development of a New Crack Identification Technique Based on Near-Tip Singular Electrothermal Field Measured by Lock-in Infrared Thermography
- Experimental Tools for Characterizing Fretting Contacts
- Infrared Thermography Instrument and Its Application in Condition Monitoring
- Boundary Element Inverse Analysis with Regularization for Estimating Welding Residual Stress Distribution in Butt-Welded Plate