対象間の差異による学習と知識構造
スポンサーリンク
概要
- 論文の詳細を見る
The basic idea of traditional similarity-based learning is that a program takes a number of instances, compares them in terms of similarities and differences, and describes the concept as a set of attributes common to positive instances. However, a concept exists because it is necessary to discriminate the concept from other concepts. Therefore, the all attributes common to positive instances are not always important to describe the concept. The important attributes are the ones which are necessary to discriminate the concept from other concepts. In this paper, I propose a new learning method based on differences among concepts. This method extracts the important attributes by changing the weight which is given to each attribute. Moreover, the method how the acquired concepts are memorized is important, especially when a given object is recognized or a concept is associated with other concepts. Therefore, a network structure based on similarity is proposed as a knowledge representation method.
- 社団法人人工知能学会の論文
- 1992-01-01
著者
関連論文
- 人間の学習モデルCORESによる代名詞と省略語の処理
- PB310 CORESによる代名詞と省略語の処理
- 13-212 静岡理工科大学教育開発センターにおける学習支援活動への取り組み : 活動の現状と課題((17)工学教育システムの個性化・活性化-III)
- 7-101 講義とe-ラーニングの併用((9)e-ラーニング実践-I)
- 配送問題に対するGAの分散的適用
- CORESによる自然言語処理における予測 : 文脈と助詞の影響の実現
- 属性値の差異に基づくカテゴリー形成モデルの実験的検討
- 対象間の差異による学習と知識構造
- 書評 LEARNING SYSTEMS Eduard Aved'yan著 Springer-Verlag (1996年)