高次Elman型ニューラルネットワークによる有限オートマトン同定問題の近似解法
スポンサーリンク
概要
- 論文の詳細を見る
未知の正則言語の正例と負例の集合が与えられたとき,これと無矛盾なN状態以下の有限オートマトンを求める問題は,有限オートマトン同定問題とよばれNP-完全である.ニューラルネットワークの学習能力に基づき,有限オートマトン同定問題の近似解を求める場合.定められた状態数以下の有限オートマトンのみが解となるような学習モデルが必要となる.また,解の存在を保証するためには,初期状態の最終状態集合への所属を学習時に決定できる仕組みが必要となる.本論文では,「log_2N⌉次元空間内の点{(P_l,P_2,…,P「log_2N&recil;):P_i∈{0,1}}の近傍にニューラルネットワークの状態を集約し,結合重みに制約を加えて同値な状態集合を構成することで,状態数制約を満足できる近似解法を提案する.初期状態の所属を決定するために,所属を判別する出力ユニットを備える高次Elman型ニューラルネットワークを構成する.勾配法に基づく学習アルゴリズムを用いて初期状態の所属を学習により決定することを可能とする.富田文法とランダム生成文法を例とし,この学習モデルが状態数制約を満たす有限オートマトンを11%から93%の割合で同定できることを計算機実験により確認する.
- 一般社団法人情報処理学会の論文
- 1999-10-15
著者
関連論文
- チューリング機械をシミュレートする再帰型高次結合ニューラルネットワークの精度について
- RHONによるチューリング機械シミュレータの構成とその簡略化について
- 再帰型高次結合ニューラルネットワークの計算能力について
- 高次Elman型ニューラルネットワークによる有限オートマトン同定問題の近似解法
- GAを用いた有限オートマトン同定問題の解法
- 再帰型高次結合ニューラルネットワークによる文脈自由言語の認識
- 再帰型高次結合ニューラルネットワークによる正規言語の学習
- 再起型高次結合ニューラルネットワークによるオートマトンの実現に関する研究
- ネットワーク機器の負荷を軽減するフィルタリングルール再構成法(インターネット)
- チューリング等価なニューラルネットワークの簡略化(バイオサイバネティックス, ニューロコンピューティング)
- 回路評価回路の並列化手続きとしての性質について
- D-1-5 候補表アルゴリズムによる文脈自由言語の並列構文解析