Correspondences to abelian varieties II
スポンサーリンク
概要
- 論文の詳細を見る
When $S$ is an algebraic scheme, and $X\to S$ and $Y\to S$ proper schemes over $S$, we define the notion of correspondences from $X$ to $Y$ over $S$. And when $Y\to S$ is a relative abelian scheme and $X$ is a normal variety, we give a characterization for a correspondence from $X$ to $Y$ over $S$ to be a graph of some morphism $X\to Y$ over $S$, which is a generalization of the result for classical correspondences in \cite{K}.
- 広島大学の論文
著者
-
KIMURA Shun-ichi
Department of Cardiovascular Surgery, Nihon University School of Medicine
-
Kimura Shun-ichi
Department Of Mathematics Graduate School Of Science Hiroshima University
関連論文
- Pathological Findings of Tissue Reactivity of Gelatin Resorcin Formalin Glue : An Autopsy Case Report of the Repair of Ventricular Septal Perforation
- Positive characteristic approach to Weak Kernel Conjecture
- Correspondences to abelian varieties II