A Novel Control Algorithm for Rapid and precise positioning
スポンサーリンク
概要
- 論文の詳細を見る
This paper investigates the positioning technology of a control system using an optimal control method. In this method, the control algorithm is based on minimization of a quadratic performance index, which consists of the position error and the weighted derivative of the error during a specific time interval. Minimization of this index allows us to obtain the optimal step control input command. It is shown that the control algorithm is efficient for positioning and simple for on-line implementation. The stability of the step control system is analyzed by the root locus method, and a means of selecting both the sampling period and the weighting matrix according to the specifications of the system is presented. Comparisons of the proposed control algo-rithm with bang-bang control and the optimum regulator problem are made. Also, a track-seeking servo control system of an optical disk driver is used to illustrate application of the proposed control method.
- 一般社団法人日本機械学会の論文
- 1992-12-15
著者
-
Lee An-chen
Department Of Mechanical Engineering National Chiao Tung University
-
SHIEH Yaw-Shih
Department of Mechanical Engineering, National Chiao Tung University
-
Shieh Yaw-shih
Department Of Mechanical Engineering National Chiao Tung University
関連論文
- Asymptotic Stability Analysis for Collocated Direct Output Feedback Control of Flexible Systems
- Optimum Magnetic Bearing Design Considering Performance Limitations
- Effective Active Damping Design for Suppression of Vibration in Flexible Systems via Dislocated Sensor/Actuator Positioning
- Path Planning for CNC Contouring around a Corner
- The Joint Displacement Method for Multiloop Kinematic Analysis
- A Novel Control Algorithm for Rapid and precise positioning
- New Direct Velocity and Acceleration Feedforward Tracking Control in a Retrofitted Milling Machine
- Performance Limits of Permanent-Magnet-Biased Magnetic Bearings
- Analysis and Testing of Magnetic Bearing with Permanent Magnets for Bias
- Optimal Vibration Control for a Flexible Rotor with Gyroscopic Effects
- Dual-Position-Controller Design for the Linear-Motor-Driven Motion System