和形係数励振振動の非線形安定性解析 : 数式処理援用による中心多様体理輪とグレブナ基底の応用
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, the analyses of the averaged equations by using the Grobner basis and Center manifold theory are proposed, and the nonlinear stability of the summed-type combination resonance is practically examined by these analyses. The bifurcation equations are algebraically solved by Grobner basis, so that the steady state amplitude is expressed by the parameters in the equation of motion. Furthermore by introduction the center manifold theory into the analysis of the averaged equation in the vicinity of the bifurcation point, the four dimensional averaged equations are reduced to two dimensional equations on the center manifold, and it is found that in the post-stable region the limit cycle occurs on the center manifold. The state plane is shown and for that limit cycle a more grobally stable analysis than one by using the Routh-Hurwitz criterion is carried out. The above analyses are performed by the use of computer algebra.
- 一般社団法人日本機械学会の論文
- 1994-04-25
著者
関連論文
- Kapitza Pendulumの分岐制御 (力学系理論の展開と応用)
- Liapunov-Schmidt法による座屈問題解析法
- 和形係数励振振動の非線形安定性解析 : 数式処理援用による中心多様体理輪とグレブナ基底の応用
- 電磁力を受けるはりに生じるカタストロフィ : Liapunov-Schmidt法と中心多様体理論を用いた非線形解析
- 非線形動吸振器を用いた走行ベルトの安定化
- (13)Nonlinear Analysis of a Parametrically Excited Cantilever Beam(Effect of the Tip Mass on Stationary Response)
- 圧電フィルムによるはり振動の検出と制御
- 適応フィルタを用いた周波数分析法による共振点通過現象の実時間解析 : 振幅および位相角の時間変化に関する実験解析
- Perturbation Methods, Bifurcation Theory and Computer Algebra by Richard H. Rand and Dieter