電磁力を受けるはりに生じるカタストロフィ : Liapunov-Schmidt法と中心多様体理論を用いた非線形解析
スポンサーリンク
概要
- 論文の詳細を見る
In a beam subjcted to electromagnetic force, that is, the three-current carrying-beam system, the catastrophe of the lateral deflection due to the increase of such force is theoretically investigated by taking account of the nonlinearity of the electromagnetic and elastic forces with respect to the lateral deflection of the beam. Not neglecting the imperfection of the bifurcation, the reduction of the equation with respect to the lateral deflection, to a low-dimensional bifurcation system, is achieved by means of the Liapunov-Schmidt reduction and the center manifold theory. Through the above nonlinear analysis, the bifurcation equation is derived, and the correction of the mode in the higher-order analysis is discussed. Furthermore, by analyzing the bifurcation equation, the bifurcation diagram, equilibrium space and bifurcation set are theoretically obtained, and the characteristics of the catastrophe are qualitatively clarified.
- 一般社団法人日本機械学会の論文
- 1994-01-25
著者
関連論文
- Kapitza Pendulumの分岐制御 (力学系理論の展開と応用)
- Liapunov-Schmidt法による座屈問題解析法
- 和形係数励振振動の非線形安定性解析 : 数式処理援用による中心多様体理輪とグレブナ基底の応用
- 電磁力を受けるはりに生じるカタストロフィ : Liapunov-Schmidt法と中心多様体理論を用いた非線形解析
- 非線形動吸振器を用いた走行ベルトの安定化
- (13)Nonlinear Analysis of a Parametrically Excited Cantilever Beam(Effect of the Tip Mass on Stationary Response)
- 圧電フィルムによるはり振動の検出と制御
- 適応フィルタを用いた周波数分析法による共振点通過現象の実時間解析 : 振幅および位相角の時間変化に関する実験解析
- Perturbation Methods, Bifurcation Theory and Computer Algebra by Richard H. Rand and Dieter