制御系の並列学習 : 重根フィルタの提案
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes a method that improves control performance in feedback control systems by introducing a multiple eigenvalue filter which has been deduced from parallel learning models. First, the controlled system model is copied to i (i=1,2,…,k) systems corresponding to learning times. The actuating signal of the first model is added to the actuating signal of the second model, and then the actuating signal of the second model is added to the actuating signal of the third model. Likewise, the actuating signal of the k-1-th model is added to the actuating signal of the k-th model. Thus obtained k-th models are equivalent to the system which has a filter as a series compensator composed of the sum of i (i=0,1,2,…,k-1) multiple of the left side of the characteristic equation. In this paper, the sum is called a "multiple eigenvalue filter" and it is concluded that the filter is effective to eliminate control variable deviation without losing stability when disturbance is imposed.
- 一般社団法人日本機械学会の論文
- 1994-03-25
著者
関連論文
- 並列処理による超リアルタイムシミュレーションコントロール(SRTC)のボイラ蒸気温度制御への応用
- 超臨界圧変圧ボイラの蒸気温度動特性
- 並列処理による超リアルタイムシミュレーションコントロール : SRTC
- 並列学習のボイラドラム水位制御への応用
- 制御系の並列学習(重根フィルタ)による同定
- 並列学習制御系の安定性
- 制御系の並列学習 : 重根フィルタの提案