粘性流体の一基礎式について
スポンサーリンク
概要
- 論文の詳細を見る
In this paper it was shown that the equation δ∫∫∫Φd×dxdydz=0,which expresses that the dissipation of energy is minimum, is equivalent to Navier-Stokes'equation, if inertia terms are zero and external forces are derived from a potential. Therefore, if fluid flows under the above condition, we can determine the motion by assuming a suitable velocity distribution and deciding its unknown constants so that they satisfy the above equation. By this method, the flow through a straight pipe with isosceles triangle cross-section was solved. The method was also applied to the flow around a sphere, and Stokes'solution was obtained. Each of these examples shows that this energy method is applicable to those problems with success.
- 一般社団法人日本機械学会の論文
- 1951-10-20
著者
関連論文
- 境界層理論における曲率の影響
- 直管および曲管内の層流理論(第2報)
- 直管および曲管内の層流理論(第1報)
- 拡大および收縮円すい管内の粘性流
- 粘性流体の一基礎式について
- 直管および曲管内層流(第2報)
- 直管および曲管内の層流(第1報)
- 粘性流体の一基礎式について
- 壓力勾配ある層流境界層
- 壓力勾配ある層流境界層