拡大および收縮円すい管内の粘性流
スポンサーリンク
概要
- 論文の詳細を見る
Laminar flows in convergent or divergent pipes were treated. To find the approximate solution, it is assumed that the streamfunction ψ can be expanded in the form [numerical formula] being the function of θ alone. In this paper ψ_<t's> were solved taking into account to the order of ψ_2,and the velocity components V_r, V_θ and the pressure distribution in the pipe were found. When the angle of the vertex of the cone is large, it wiss assumed that the boundary layer grows along the wall of the cone. For the convergent flow, the boundary layer equation have been solved and the local frictional coefficient and the velocity distribution in the boundary layer have been found.
- 一般社団法人日本機械学会の論文
- 1951-10-20
著者
関連論文
- 境界層理論における曲率の影響
- 直管および曲管内の層流理論(第2報)
- 直管および曲管内の層流理論(第1報)
- 拡大および收縮円すい管内の粘性流
- 粘性流体の一基礎式について
- 直管および曲管内層流(第2報)
- 直管および曲管内の層流(第1報)
- 粘性流体の一基礎式について
- 壓力勾配ある層流境界層
- 壓力勾配ある層流境界層