Evaluation of Deformation Mode Change along 3-Dimensional Crack Front Line by CED
スポンサーリンク
概要
- 論文の詳細を見る
In an idealized 2-dimensional crack, the deformation constraint is kept constant along the crack front line. Thus, it is expected that the fracture mode is also kept constant along the crack front line. However, the deformation constraint and fracture mode generally change along the crack front line in a 3-dimensional crack, and this deformation mode change cannot be dealt with by applying conventional parameters such as K or J. The CED (crack energy density) was proposed as a parameter which has no restriction on the constitutive equation and is expected to be applicable to almost all kinds of crack problems. This paper purports to demonstrate that the deformation mode change above can be evaluated quantitatively when the CED is applied.
- 一般社団法人日本機械学会の論文
- 1991-10-15
著者
-
Watanabe Katsuhiko
Institute Of Industrial Science University Of Tokyo
-
Yoshikawa N
Univ. Tokyo Tokyo Jpn
-
Yoshikawa Nobuhiro
Institute Of Industrial Science The University Of Tokyo
関連論文
- ClusteredShrinkagePoresinIll-ConditionedAluminumAlloyDieCastings
- Effects of Material Brittle/Ductile Property and Crack Tip Loading Type on Fracture Mode of a Mixed-Mode Crack
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (5 th Report, Comparison with the Fracture Resistances Evaluated by CTOD and CTOA) : Series A : Solid-Mechanics, Strength of Materials
- Evaluation of Fracture Resistance of Stably Growing Crack by Crack Energy Density : 3rd Report, Effect of Sheet Thickness on Fracture Resistance of Ductile Crack in Thin Plate
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (2nd Report, Application to a Ductile Crack in Thin Plate)
- Effects of Tool Rotating Rate and Pass Number on Pore Structure of A6061 Porous Aluminum Fabricated by Using Friction Stir Processing
- Stress Singularity Analysis of Axisymmetric Piezoelectric Bonded Structure(Fracture Mechanics)
- Nondestructive observation of pore structures of A1050 porous aluminum fabricated by friction stir processing
- Discretized Modeling for Shape Finding of Soft Bodies
- A Fundamental Study on a Discontinuous Crack Model : A General Constitutive Equation and Evaluation of Crack Parameters
- CED (Crack Energy Density) in an Arbitrary Direction and Load-Displacement Curves
- Initial Characterization of a Fibroblast-loaded Porous Elastin Film Reconstituted by a Novel Crosslinker, Dode-DSP
- An Evaluation of the Fracture Resistance of a Stably Growing Crack by Crack Energy Density (1st Report, Derivation of Fundamental Relations and Proposal of Evaluation Method)
- Proposal of New Stability-instability Criterion for Crack Extension Based on Crack Energy Density and Physical Systematization of Other Criteria
- Fracture Parameter for Interface Debonding in Fiber-reinforced Compoiste(Composite 2)
- Evaluation of Fracture Resistance of Stably Growing Crack by Crack Energy Density : 4th Report, Comparison with the Evaluation of Fracture Resistance of J-Integral
- Characteristics of the Stress Intensity Factor of a Circumferential Crack in a Cylinder under Radial Temperature Distribution
- CED (Crack Energy Density) for an Interface Crack
- 1204 Estimating Fatigue Crack Initiation of Aluminum Die Cast Alloy using Image Based Finite Element Analysis
- Theory of Elasticity for Plain-Weave Fabrics (1st Report, New Concept of Pseudo-Continuum Model)
- Homology Design for Eigenvector of Bending Vibration Using Finite Element Method
- Shift synthesis to realize linear homologous deformation
- Design Methodology of Flexible Structures by Spring-and-Segment Model
- Finite Element Modeling of Textile Composite Using X-ray CT Images(Composite 2)
- Design Change to Realize Homologous Deformation
- Evaluation of Deformation Mode Change along 3-Dimensional Crack Front Line by CED
- Path Independent Integral to Creep Crack and Crack Energy Density
- Application of ε_J-integral to Elasto-plastic Crack Problems under Monotonic or Cyclic Loading : Physical Meanings of J (ΔJ) and Analysis of Crack Energy Density
- Evaluation of Crack Energy Density by Using E_J-integral in case of Elasto-plastic and Creep Crack
- Applicability of Compounded Mesh Pattern to Three-Dimensional Interface Problems(Modeling & Simulation)
- Behavior of Creep Crack Growth and Its Simulation from the Standpoint of Crack Energy Density
- Proposal of a New Crack Model Considering the Discontinuity in the Cracked Plane and Its Application to the Evaluation of Crack Parameter
- Theory of Elasticity for Plain-Weave Fabrics (2nd Report, Finite Element Formulation)
- Fabrication and Tensile Tests of Aluminum Foam Sandwich with Dense Steel Face Sheets by Friction Stir Processing Route
- Crack Energy Density on a 3-Dimensional Crack : Series A : Solid-Mechanics, Strength of Materials
- Shear Deformation of Diamond Crystals: Topology Analysis of Electron Density
- Evaluation of Aging Effects on Skin Wrinkle by Finite Element Method
- WRINKLE ANALYSIS OF AGING SKIN BY FINITE ELEMENT METHOD(1E1 Computational Biomechanics)
- Effects of Porosity and Pore Structure on Compression Properties of Blowing-Agent-Free Aluminum Foams Fabricated from Aluminum Alloy Die Castings
- Relationship between Porosity and Interface Fracture on Aluminum Foam Sandwich with Dense Steel Face Sheets Fabricated by Friction Stir Processing Route
- X-Ray CT Inspection for Porosities and Its Effect on Fatigue of Die Cast Aluminium Alloy
- Real-Space ab initio Calculations on the Basis of Spectral Element Method
- Error-Convergence Property of ab-initio Finite-Element Calculation with Curving Grid
- Estimation of Plateau Stress of Porous Aluminum Based on Mean Stress on Maximum-Porosity Cross Section