郡山金魚養殖池における水色の発現機構と金魚の生産 : 5 異なる藻類相が, 金魚に対する環境条件としてもつ意味に関する研究
スポンサーリンク
概要
- 論文の詳細を見る
Gold-fish culturing ponds were calssified into two types, i.e. type A and type B from chromatological and biological points of view ; their characteristics can be summarized as follows (1961) : Type A ponds : The production of Chlorophyceae exceeds that of type B ponds throughout the year. Chlorophyceae becomes dominant, overwhelming cyanophyceae in June and in winter. By such a characterlistic of seasonal change of plankton. the Jocate points x, y, of the water color approaches to the Illuminant C twice a year on the C.I.E. chromaticity diagram. Type B ponds : The production of Cyanophyceae exceeds that of type A ponds throughout the year. Chlorophyceae becomes dominant only in winter. Therefore, the locate points x, y, of the water color approaches to the Illuminant C once a year, i.e. in winter. It was made clear that the production of Fringetail gold-fish in the first year was larger in the type A ponds than those of type B (1961). To make clear why the production of Fringetail gold-fish is larger in the type A ponds than in type B ponds, I have carried out the following experiments from the view point of environmental sanitation of the gold-fish. (1) The experiments on the difference of the vertical distribution of dissolved oxygen and the standing crop of phytoplandton between the two types of ponds. (2) The experiments on the difference of the diurnal change of the vertical distribution of dissolved oxygen and water temperature between the two types of ponds. These experiments were carried out in june, 1960,because the environmental differences between both ponds types are most remarkable in this period of the year. The results of the experiments (1) are shown in Figs. 1 and 2,in which the former shows the vertical distribution of the amount of dissolved oxygen which differs considerably in the different types of ponds. In the type A ponds, the oxygen curves are represented by hyperbola or sigmoid, while they are parabola in the ponds of type B. This may be caused by the difference of vertical distributions of the quantities of phytoplankton, as shown in Fig. 2. In the ponds of type A, the standing crop of pohytoplankton is nearly equai in quantity from the upper layer to the lower, and the absolute quantities are less than in the ponds of type B (Fig. 2). Since the light penetrates reiatively deep into the water in the ponds of type A, the productive layer is thick, and there occurs thick over-saturation of dissolved oxygen which diffuses toward the middle or deeper layer. The sudden decrease of the amount of dissolved oxygen below the middle layer is due to the decomposition of organic matter and the formation of a large amount of ooze, so that the deeper layer may be regarded as a decomposition layer, whose range is but small. In the ponds of type B, the standing crop of phytoplankton in the upper layer is considerably larger than that of the deper one. The absolute quantities are much larger in the ponds of type B than in the ponds of type A. The light is intercepted by the plankton as well as by the neuston (the neuston is more significant), the photosynthesis decreasing quickly with the increase of the depth of water, in spite of the great population throughout the water mass. The dissolved oxyen in the upper layer is extremely large but decreases suddenly with depth. The range of the production layer is very small but that of the decomposition layer is large in the ponds of type B. The results of the experiments (2) are shown in figs. 3 and 4. The curves in Fig. 3 show hyperbola or sigmoid which represent the vertical distribution of dissolved oxygen in the pond of type A in the day time, similar in Fig. 1; and, in the pond of type B the curves in the day time are all parabola. At night, however, the amount of dissolvd oxygen becomes nil from the surface to the bottom in both types of ponds, the diminishing duration in the pond of type B being much longer than in that of type A. The vertical distribution of disso
- 1961-12-01
著者
関連論文
- 磐梯高原の桧原湖・小野川湖・秋元湖・曽原湖の湖沼条件とプランクトン
- 郡山金魚養殖池における水色の発現機構と金魚の生産 : 5 異なる藻類相が, 金魚に対する環境条件としてもつ意味に関する研究
- 郡山金魚養殖池における水色の発現機構と金魚の生産 : 3 池水の呈色の周年変化とプランクトン相および量との関連
- 郡山金魚養殖地における水色の発現機構と金魚の生産 : 2、金魚池に生産されるプランクトンの種類(Scenedesmsvを除く)
- 強酸性河川長瀬川水系(福島県)の付着藻類植生
- 無機酸性湖の富栄養化
- 強酸性湖潟沼の陸水生物学的研究
- 蔦沼の現状と富栄養化
- 恐山湖の富栄養化
- 猪苗代湖の湖沼学的研究
- 鶏糞投入および曝気の池の生物におよぼす影響
- 睡蓮沼池沼群(青森県)のC.I.E.表色法による堆積泥の色と珪藻遺骸の群構造および水色
- 養魚池における金魚(琉金)の排出物の量の日周期変化に関する研究
- 付着珪藻群集に基づく有機汚濁指数 : DAIpoとその生態学的意義
- 奈良市を貫流する佐保川の付着珪藻と汚染地図の季節変化
- 付着珪藻群集を環境指標としてみたバンコック・チェンマイ市周辺河川の汚濁状況
- 旭ダム湖における Peridinium cinctum f. westii による淡水赤潮の発生機構の研究
- 風屋ダム湖における Peridinium bipes f. occulatum による淡水赤潮の発生機構の研究
- 揚水発電がダム湖の富栄養化に及ぼす影響--フィ-ルドワ-クからの考察
- 奈良県室生ダム湖およびその流入河川における陸水生物と水銀の動向(珪藻殻をトレーサーとしての湖底堆積物の堆積機構への考察)
- 津田松苗先生を偲ぶ
- ケイ藻をトレ-サ-として推定した琵琶湖南北両湖盆の水の交流
- 石川県犀川の汚水生物学的研究,とくに川底の石の上面下面の水質汚濁階級の相異について
- 高見川の水生昆虫の呼吸量
- 吉野川における付着藻類群落の種類組成と生産量
- 水生昆虫の呼吸量
- 石狩川の生物学的水質判定 : 1967年12月の場合
- 水月湖における夏季プランクトンとその垂直分布
- 北海道の斜里川・止別川における生物学的水質判定
- 奈良県上北山村坂本ダム湖の調査結果
- 奈良県猿谷ダム湖の水温の年変化
- 肉眼的底生動物の種類数をもととする水質の生物指標
- 理科における実験・観察技能の評価について
- 奈良県月瀬村五月川における藻類と水棲昆虫の生態学的研究
- 鳶沼湖沼群(青森県)における湖沼堆積泥の色と珪藻遺骸の群構造
- 猿谷ダム湖(奈良県)の水位変動が生物へおよぼす影響
- 旭川第 1,第2ダム湖(岡山県)の陸水生物学的研究
- 旭川第一ダム湖の底泥と底泥中の生物
- 北海道常呂川の水質汚濁に対する珪藻の種類数に基づく生物指標
- 鴨川水系における硅藻の種類数に基づく水質汚濁の生物指数
- 白濁する溜池のC.I.E.表色法による水色とプランクトン
- Epilithic freshwater diatoms in Central Sumatra