常微分方程式系の解の爆発時刻および爆発レートの推定法 : 偏微分方程式の爆発問題への応用
スポンサーリンク
概要
- 論文の詳細を見る
A numerical method is proposed for estimating the blow-up time and blow-up rate of the solution of the system of ordinary differential equations (ODEs), whose solution has a pole at a finite time, that is, the blow-up time. The main idea is to transform the ODE system into a tractable form by Moriguti's technique, and to generate a linearly convergent sequence to the blow-up time. The sequence is accelerated by the Aitken Δ^2 method. The present method is applied to the problem of finding the blow-up time of the solution of partial differential equations (PDEs), by discretizing the PDEs in space. Numerical experiments on the two PDEs, the semilinear reaction-diffusion equation and the heat equation with a nonlinear boundary condition, show the validity of the present method.
- 日本応用数理学会の論文
- 2004-03-25
著者
関連論文
- 第37回数値解析シンポジウム(NAS 2008)参加報告(学術会合報告)
- マーク・レヴィ著, 松浦俊輔訳, 機械じかけの数学, 青土社, 2009年
- 常微分方程式における変係数離散変数法 (数値解析と新しい情報技術)
- 常微分方程式系の解の爆発時刻および爆発レートの推定法 : 偏微分方程式の爆発問題への応用
- An Experimental Study of the Starting Values of the Durand-Kerner-Aberth Iteration(The State of the Art of Scientific Computing and Its Prospect II)
- Order Barrier for Adams type Linear Multistep Multiderivative Methods with Nonnegative Coefficients(Numerical Ordinary Differential Equations and Related Topics)
- 非負係数を持つAdams型線形多段階法の可到達次数(数値解析とそのアルゴリズム)
- 長時間積分における誤差とその抑制法