$f$-structures on the classical flag manifold which admit (1, 2)-symplectic metrics
スポンサーリンク
概要
- 論文の詳細を見る
We characterize the invariant $f$-structures $\mathcal{F}$ on the classical maximal flag manifold $\mathbb{F}(n)$ which admit (1,2)-symplectic metrics. This provides a sufficient condition for the existence of $\mathcal{F}$-harmonic maps from any cosymplectic Riemannian manifold onto $\mathbb{F}(n)$. In the special case of almost complex structures, our analysis extends and unifies two previous approaches: a paper of Brouwer in 1980 on locally transitive digraphs, involving unpublished work by Cameron; and work by Mo, Paredes, Negreiros, Cohen and San Martin on cone-free digraphs. We also discuss the construction of (1,2)-symplectic metrics and calculate their dimension. Our approach is graph theoretic.
- 東北大学の論文
著者
-
San Martin
Department Of Mathematics Imecc-unicamp
-
Cohen Nir
Department of Applied Mathematics, IMECC-UNICAMP
-
Negreiros Caio
Department of Mathematics, IMECC-UNICAMP
-
Paredes Marlio
Escuela de Matematicas, Universidad Industrial de Santander
-
Pinzon Sofia
Escuela de Matematicas, Universidad Industrial de Santander
-
Cohen Nir
Department Of Applied Mathematics Imecc-unicamp
-
Pinzon Sofia
Escuela De Matematicas Universidad Industrial De Santander
-
Negreiros Caio
Department Of Mathematics Imecc-unicamp
-
Paredes Marlio
Escuela De Matematicas Universidad Industrial De Santander