Notes on Highest Weight Modules of the Elliptic Algebra [numerical formula]
スポンサーリンク
概要
- 論文の詳細を見る
We discuss a construction of highest weight modules for the recently defined elliptic algebra [numerical formula], and make several conjectures concerning them. The modules are generated by the action of the components of the operator L on the highest weight vectors. We introduce the vertex operators Φ and Ψ^* through their commutation relations with the L-operators. We present ordering rules for the L- and Φ-operators and find an upper bound for the number of linearly independent vectors generated by them, which agrees with the known characters of [numerical formula]-modules.
- 理論物理学刊行会の論文
- 1995-06-26
著者
-
MIWA Tetsuji
Research Institute for Mathematical Sciences, Kyoto University
-
Jimbo Michio
Research Institute For Mathematical Sciences Kyoto University
-
Jimbo Michio
Department Of Mathematics Faculty Of Science Kyoto University
-
Miwa Tetsuji
Research Institute For Mathematical Sciences Kyoto University
-
Miwa T
Research Institute For Mathematical Sciences Kyoto University
-
Yan H
Univ. Sydney Nsw Aus
-
FODA Omar
Department of Mathematics, University of Melbourne
-
IOHARA Kenji
Department of Mathematics, Faculty of Science, Kyoto University
-
KEDEM Rinat
Research Institute for Mathematical Sciences, Kyoto University
-
YAN Hong
Institute of Theoretical Physics
-
Foda Omar
Department Of Mathematics University Of Melbourne
-
Kedem Rinat
Research Institute For Mathematical Sciences Kyoto University
-
Iohara K
Kyoto Univ. Kyoto Jpn
-
Iohara Kenji
Department Of Mathematics Kyoto University : Jsps Research Fellow
-
Jimbo Michio
Department of Mathematics, Faculty of Science, Kyoto University
関連論文
- Determinant Formula for Solutions of the Quantum Knizhnik-Zamolodchikov Equation Associated with $U_q(sl_n)$ at $|q|=1$
- Supplement to Holonomic Quantum Fields. IV
- Holonomic Quantum Fields. V
- Holonomic Quantum Fields. IV
- Holonomic Quantum Fields III
- Holonomic Quantum Fields. II-The Riemann-Hilbert Problem-
- Holonomic Quantum Fields I
- Monodromy Preserving Deformation of Linear Differential Equations and Quantum Field Theory (非線形発展方程式に関する数理物理的研究(研究会報告))
- Holonomy Structure of Landau Singularities and Feynman Integrals
- Quasi-Periodic Solutions of the Orthogonal KP Equation-Transformation Groups for Soliton Equations V-
- Transformation Groups for Soliton Equations-Euclidean Lie Algebras and Reduction of the KP Hierarchy-
- KP Hierarchies of Orthogonal and Symplectic Type : Transformation Groups for Soliton Equations VI
- Operator Approach to the Kadomtsev-Petviashvili Equation : Transformation Groups for Soliton Equations III
- Notes on Highest Weight Modules of the Elliptic Algebra [numerical formula]
- Introduction to Microlocal Analysis
- New $R$ Matrices Associated with Cyclic Representations of $U\sb q(A\sp {(2)}\sb 2)$
- Cyclic Representations of $\textit{U}_q(\mathfrak{s}\mathcal{I}$(n+1, $\textbf{C}))$
- Method for Generating Discrete Soliton Equations.IV
- Method for Generating Discrete Soliton Equation.III
- Method for Generating Discrete Soliton Equation.II
- Method for Generating Discrete Soliton Equations.I
- An Inverse Scattering Problem and the Fifth Painleve Transcendent
- Notes on Differential Equations Arising from a Representation of 2-Toroidal Lie Algebras
- Solitons and Infinite-Dimensional Lie Algebras
- Painleve Property of Monodromy Preserving Deformation Equations and the Analyticity of $\tau$ Functions
- Monodromy Problem and the Boundary Condition for Some Painleve Equations
- Chifford Operators and Riemann's Monodromy Problem