A Nonlinear Derivative Schroedinger-Equation: Its Bi-Hamilton Structures, Their Inverses, Nonlocal Symmetries and Mastersymmetries
スポンサーリンク
概要
- 論文の詳細を見る
We investigate the bi-Hamiltonian formulation for the nonlinear derivative Schroedinger-equation. The underlying symplectic and implectic operators can be inverted explicitly yielding a Laxhierarchy of both local and nonlocal symmetry transformations and conservation laws. An infinite sequence of mastersymmetries for this hierarchy is constructed.
- 理論物理学刊行会の論文
- 1985-10-25
著者
-
Strampp Walter
Fachbereich 17 Mathematik Gesamthochschule Kassel
-
Strampp W.
Fachbereich 17. Mathematik Wilhelmshoeher Allee 73 Gesamthochschule Kassel
-
Strampp W.
Fachbereich 17 Mathematik Gesamthochschule Kassel
-
OEVEL W
Fachbereich 17, Mathematik, Warburger Str. 100 Universitaet Paderborn
-
Oevel W
Fachbereich 17 Mathematik Warburger Str. 100 Universitaet Paderborn
-
Oevel W.
Universitat Paderborn
-
STRAMPP Walter
Department of Applied Physics, Faculty of Engineering University of Tokyo
-
Strampp W.
Fachbereich 17-Mathematik, GH-Universitaet Kassel
-
Oevel W.
Fachbereich 17, Mathematik, Warburger Str. 100 Universitaet Paderborn
関連論文
- On the Resonance Pattern of Integrable Equations: General and Mathematical Physics
- Symmetries and the Painleve Property : General and Mathematical Physics
- The KP Hierarchy and Aspects of the Painleve Property : General and Mathematical Physics
- Lax Formulation, Painleve Property and Recursion Operator for a Space-Dependent Burgers' Equation
- A Comment on Backlund Transformations Connected with the Strum-Liouville Operator
- A Nonlinear Derivative Schroedinger-Equation: Its Bi-Hamilton Structures, Their Inverses, Nonlocal Symmetries and Mastersymmetries
- Solutions to Non-Linear Reaction-Diffusion Equations in Two Space Dimensions
- Backlund Transformations and Recursion Operators via Symmetry
- Mastersymmetries and Multi : Hamiltonian Formulations for Some Integrable Lattice Systems : General and Mathematical Physics
- Master Symmetries for Finite Dimensional Integrable Systems--The Calogero-Moser system