A Comment on Backlund Transformations Connected with the Strum-Liouville Operator
スポンサーリンク
概要
- 論文の詳細を見る
There exists a well-known transformation associating different Sturm-Liouville equations. It is shown that this transformation as well applies to equations occuring in the Lax formation of various nonlinear equations. This leads immediately to bilinear Backlund transformations.
- 理論物理学刊行会の論文
- 1983-07-25
著者
-
Strampp W.
Mathematik Gesamthochschule Kassel
-
BRIZ K.-H.
Mathematik, Gesamthochschule Kassel
-
Briz K.-h.
Mathematik Gesamthochschule Kassel
-
Briz K.H.
Mathematik, Gesamthochschule Kassel
-
STRAMPP Walter
Department of Applied Physics, Faculty of Engineering University of Tokyo
-
Strampp W.
Fachbereich 17-Mathematik, GH-Universitaet Kassel
関連論文
- On the Resonance Pattern of Integrable Equations: General and Mathematical Physics
- Symmetries and the Painleve Property : General and Mathematical Physics
- The KP Hierarchy and Aspects of the Painleve Property : General and Mathematical Physics
- Lax Formulation, Painleve Property and Recursion Operator for a Space-Dependent Burgers' Equation
- A Comment on Backlund Transformations Connected with the Strum-Liouville Operator
- A Nonlinear Derivative Schroedinger-Equation: Its Bi-Hamilton Structures, Their Inverses, Nonlocal Symmetries and Mastersymmetries
- Solutions to Non-Linear Reaction-Diffusion Equations in Two Space Dimensions