Orthonormal Wavelet Expansion and Its Application to Turbulence : Progress Letters
スポンサーリンク
概要
- 論文の詳細を見る
Orthonormal wavelet expansion is applied to experimental data of turbulence. A direct relation is found between the wavelet spectrum and the Fourier spectrum. The orthonormal wavelet analysis with conditional sampling is applied to data of wind turbulence, yielding Kolmogorov's spectrum and the dissipation correlation with the intermittency exponent μ≃0.2.
- 理論物理学刊行会の論文
- 1990-05-25
著者
-
Yamada M
Disaster Prevention Research Institute Kyoto University
-
YAMADA Michio
Disaster Prevention Research Insitute, Kyoto University
-
Ohkitani Koji
Department Of Physics Faculty Of Science Kyoto University
-
Yamada Michio
Disaster Prevention Research Insitute Kyoto University
-
OHKITANI Koji
Department of Physics, Faculty of Science, Kyoto University
関連論文
- Temporal Intermittency in the Energy Cascade Process and Local Lyapunov Analysis in Fully-Developed Model Turbulence : General and Mathematical Physics
- Euler-Lagrange定式化による磁気流体力学方程式の解析 (乱流現象と力学系的縮約)
- Energy and Flantness Spectra in a Forced Tubulence
- Blow-up problems modeled from the strain-vorticity dynamics (Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics)
- Interaction of Helical Modes in Formation of Vortical Structures in Decaying Isotropic Turbulence
- Error Growth in a Decaying Two-Dimensional Turbulence
- Triply Periodic Motion in a Navier-Stokes Flow
- 28aXG-5 磁気つなぎ替えの数値シミュレーション(28aXG 電磁流体・波動,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- 19pXJ-2 軸対称Navier-Stokes方程式のあるクラスの解の爆発問題(渦運動・界面・特異性,領域11(統計力学,物性基礎論,応用数学,力学,流体物理))
- Euler-Lagrange定式化による乱流の解析 (乱流の解剖 : 構造とはたらきの解明)
- 渦運動力学の基礎(講義ノート)
- Linear strain flows with and without boundaries : the regularizing effect of the pressure term (Turbulence Transport, Diffusion and Mixing)
- 21pWE-6 一般化された Weber 変換による非圧縮性流体力学
- The final works of Rich Pelz, a man of warm-hearted intelligence (Rich Pelz' Contributions to Fluid Dynamics)
- F225 Euler-Lagrange 定式化による渦のつなぎ替えの数値計算
- Comparison between the Boussinesq and coupled Euler equations in two dimensions (Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics)
- 18pRJ-9 ブシネ方程式と連立オイラー方程式
- 乱流中の渦構造の形成に関する粘性散逸のはたらき (乱流構造の数理 : 発生・動力学・統計・応用)
- 30pZD-6 拡張コーシー則による乱流中の渦伸長と粘性散逸の定量的評価
- D323 局所'ヘリシティ'による乱流渦構造の同定
- オイラー方程式のあるクラスのストレッチ解における特異点の形成 (乱流の統計性質と構造に基づくその動力学的記述)
- 25aZE-4 3次元流のエンストロフィーの時間発展の変分法的特徴づけ
- Isaac Newton Institute(海外,ラボラトリーズ)
- 25pV-1 EulerおよびNavier-Stokes方程式のあるクラスの解における特異点の形成
- 一様等方性乱流の渦度とパッシブベクターの伸長
- Orthonormal Wavelet Expansion and Its Application to Turbulence : Progress Letters
- Motion of an Interface between Two Uniform-Vorticity Regions in Two-Dimensional Inviscid Fluids
- An Identification of Energy Cascade in Turbulence by Orthonormal Wavelet Analysis : General and Mathematical Physics
- Enstrophy Cascade in a Model of 2D Turbulence : Comparison with 3D Energy Cascade
- The Inertial Subrange and Non-Positive Lyapunov Exponents in Fully-Developed Turbulence
- Lyapunov Spectrum of a Chaotic Model of Three-Dimensional Turbulence