Selberg zeta functions for cofinite lattices acting on line bundles over complex hyperbolic spaces
スポンサーリンク
概要
- 論文の詳細を見る
For a line bundle over a finite volume quotient of the complex hyperbolic space, we write down an explicit trace formula for an admissible function lying in the Harish-Chandra $p$-Schwartz space $\cC^p(G)$, $0< p <1$, we apply it to a suitable admissible function in order to discuss the analytic continuation of the associated Selberg zeta function.
- 広島大学の論文