Wronskian formula on higher derivations VI
スポンサーリンク
概要
- 論文の詳細を見る
In the final paper we express Wronskian formula explicitly by making use of the results of the preceding papers and the present one. For convenience sake, this paper includes the characteristic zero case.
- 大分大学の論文
著者
関連論文
- A note on a condition for the obstruction ideal of an element α to be equal to the obstruction ideal of a linear fractional transform of α
- Flatness and some other properties of a finitely generated extension of anti-integral elements over a Noetherian domain
- A note on some conditions on integrality of the intersection of two simple ring extensions
- Linear Fractional Transforms of an Anti-integral Element over a Noetherian Domain
- Ideals generated by α-a and ideals generated by aα-1 of a Laurent extension R[α,α^-1] of a Noetherian domain
- Extensions R[α] and R[α^2]of a Noetherian domain R
- The Picard group of a finitely generated and birational extension of a Noetherian domain
- Wronskian formula on higher derivations III
- Picard groups and relative invariants II
- Wronskian formula on higher derivations II
- The divisor class group of the ring of invariants associated with μ_q-actions
- Wronskian formula on higher derivations VI
- Wronskian formula on higher derivations V
- Picard groups and relative invariants I
- Relative invariants and divisor class groups II
- Relative invariants and divisor class group I
- Relative Invariants and Divisor Class Groups(1)
- 指数3の拡大k(x,y)/Kのモデュラ-性〔英文〕
- Modularity on Extensions k(x,y)/K of Exponent Two and Subrings of k[x,y]
- One Dimensional Subrings of Constants of a Polynomial Ring
- Higher Derivations and Endomorphism Rings-2-
- Higher Derivations and Endomorphism Rings-1-
- Radical Descent on Picard Groups-1-
- Examples of Krull Domains in Galois Descent Theory-3-
- Examples of Krull Domains in Galois Descent Theory-2-
- An Example of the Non-Noetherian Invariant Subring of a Noetherian Domain
- Ramification in Integral Extensions
- Separability and Pseudo-reflections of Intermediate Integral Domains
- Examples of Krull Domains in Galois Descent Theory-1-
- Galois Descent Technique for Computing Divisor Class groups-2-
- The Divisor Class Groups of Invariant Subrings of a Krull Domain