ある3次多項式族のパラメータ空間について
スポンサーリンク
概要
- 論文の詳細を見る
In this note, the dynamics of a family of cubic polynomials with a parabolic fixed point of multiplier 1 are considered. Especially, the structure of parabolic components of its connectedness locus is investigated. lt turns out that all parabolic components are parametrized by the Fatou vectors. This corresponds to the fad that hyperbolic components are parametrized by the multipliers of the attracting cycles. Some boundary properties are also investigated.
- 東京工芸大学の論文
- 1999-01-31
著者
関連論文
- Component-wise accumulation sets for Axiom A polynomial skew products (複素力学系とその関連分野の総合的研究)
- Branner-Hubbard-Lavaurs deformation of parabolic cubic polynomials(Complex Dynamics and its Related Fields)
- Non-landing of stretching rays for real cubic polynomials and real biquadratic polynomials (Complex Dynamics)
- Dynamics of a family quadratic maps in the quaternion space
- Accumulation of stretching rays for real cubic polynomials (Studies on complex dynamics and related topics)
- Non-landing of stretching rays for the family of real cubic polynomials (Comprehensive Research on Complex Dynamical Systems and Related Fields)
- 実3次多項式族のStretching Rays (複素力学系の研究 : 現状と展望)
- ある3次多項式族のパラメータ空間について
- Grotzschの欠損について
- Mandelbrot集合の外射線の到達性について(複素力学系とその関連分野)
- ある種のBaker領域について
- Tricornの非弧状連結性について(複素力学系に関する諸問題)
- 放物型周期点の分岐について
- 反正則写像の力学系とtricorn
- Tricornの境界上のQC同値性(力学系の構造と分岐)
- Antipolynomial-like mappingsの力学系について
- Tricornとattracting odd order cyclesの分岐
- Local Profile of mild solutions in 2D symmetric domains(Solutions for Nonlinear Elliptic Equations)
- 数学教育におけるCAI : フラクタル幾何学入門
- 2次のBlaschke関数の力学系について
- -$\Delta$u = $\lambda e^u$の解の分岐について(代数解析学の諸相)
- ある非線形境界値問題と分岐理論
- Hamilton-Jacobi方程式の解の特異点について
- 2次元保存則に対する衝撃波の生成
- Formation of shocks for a single conservation law
- Postcritical sets and saddle basic sets for Axiom A polynomial skew products on $\mathbb{C}^2$ (Research on Complex Dynamics and Related Fields)
- On saddle basic sets for Axiom A polynomial skew products on \mathbb{C}^2 (Integrated Research on Complex Dynamics)