J-積分法を用いた場合の有限要素法による応力拡大係数 K_I の精度について
スポンサーリンク
概要
- 論文の詳細を見る
In determining the stress intensity factor K_I, the direct application of the finite element method gives poor results in the accuracy, but the J-Integral method developed by Rice can be expected somewhat good accuracy for relatively coarse meshes. Recently Yamamoto et al. have proposed a calculation method based on superposition of analytical and finite element solution. They obtained fairly good results. The purpose of this paper is to get good accuracy for extremely coarse meshes by the application of J-Integral method to the superposition method. The numerical calculations were performed for such three cases as center cracked, symmetrical edge cracked and single edge cracked rectangular plates (aspect ratio, L/W=1.4) using 215,110 and 35 meshes. The calculated values for the correction factor, F(a/W) were obtained within 1~3% against the exact solution for every cases.
- 山口大学の論文
- 1974-03-30
著者
関連論文
- ある人身過失事故の力学的解析
- 円錐体による薄鋼板の貫通破壊
- 混合モード状態における脆性破壊基準の実験的評価について
- 有限要素法による混合モードに対する J 積分値の精度の向上について
- 境界要素法による弾塑性解析
- 三次元弾性有限要素法による亀裂先端近傍の応力解析
- 等価エネルギ法による J 積分値の有限要素法による評価
- SCMn 2A 鋳鋼材の破壊強度に及ぼす板厚の影響
- 折れ線要素を用いた二次元静弾性境界要素法
- J-積分法を用いた場合の有限要素法による応力拡大係数 K_I の精度について
- 温度変動下における軟鋼の高温疲労(第1報)
- 隣接亀裂をもつ矩形板の破壊強度 : 中央亀裂と両側亀裂が存在する場合
- Drawability of Circular Blank of Stainless Steel Sheets
- SM41Aの高温疲労に及ぼす温度変動の影響
- 温度変動下における軟鋼の高温疲労(第 2 報)