<研究報告>トラスと梁の簡易なマトリクス解法
スポンサーリンク
概要
- 論文の詳細を見る
The matrix methods have appeared to be successful in the investigation of modern elastomechanics. The basic theory adopted in their methods is based on the idea to take a complicated system into component elements with simple elastic and dynamic properties that can be readily expressed in the matrix form. In the application to truss, matrix equation can be derived from the general expression for the axial displacement and external force and internal stress vectors separately. Then, the deflection of this truss is readily determined by save trouble means to matrix calculus. When computing a flexural vibration system of beams with distributed masses and elastic supports as springs, such a system is easily analyzed by transfer matrices. In this case, the shifted column matrix operation is used numerically. Then, the general frequency equation and the normal mode shape are derived. In this paper, some examples are given to demonstrate above methods.
- 沼津工業高等専門学校の論文
- 1985-01-31
著者
関連論文
- 回転機構の相対力学
- トラスと梁の簡易なマトリクス解法
- 梁の振動の関数特性と実験
- 機構に於ける曲線の創成と解析
- Pneumatic軸受を用いた空気タービンの実験
- 四節リンクの駆動と設計
- 高速空気タ-ビンの実験
- 簡単な自動弁の変形と動力学
- 幾何学的な形の荷重による梁の撓み
- Pneumatic Instrumentsの設計及び実験
- A brief note on the Laplace transformation
- 相対機械運動解析法の検討
- Some problems of the solution √pH(t)
- 管路流れの制御特性とLaplace変換