On the Inhomogeneous Yang-Mills Equation dD*RD=f
スポンサーリンク
概要
- 論文の詳細を見る
We build a canonical family {Ds } of Hermitian connections in a Hermitian CR-holomorphic vector bundle (E,h ) over a nondegenerate CR manifold M, parametrized by S ∈ Γ ∞(End (E )), S skewsymmetric. Consequently, we prove an existence and uniqueness result for the solution to the inhomogeneous Yang-Mills equation dD*R D =f on M. As an application we solve for D ∈D (E,h ) when E is either the trivial line bundle, or a locally trivial CR-holomorphic vector bundle over a nondegenerate real hypersurface in a complex manifold, or a canonical bundle over a pseudo-Einstein CR manifold.
- 東北大学の論文
著者
-
DRAGOMIR Sorin
Universita degli Studi della Basilicata Dipartimento di Matematica Contrada Macchia Romana
-
Urakawa Hajime
Tohoku University Mathematics Laboratories Graduate School Of Information Sciences
-
Dragomir Sorin
Università Degli Studi Della Basilicata Dipartimento Di Matematica E Informatica
-
Dragomir Sorin
Universita Degli Studi Della Basilicata Dipartimento Di Matematica Italia
関連論文
- Foliated CR manifolds : Dedicated to Professor Philippe Tondeur on his seventieth birthday
- On the Inhomogeneous Yang-Mills Equation dD*RD=f
- Pseudoharmonic maps and vector fields on CR manifolds
- Unstable harmonic maps into real hypersurfaces of a complex Hopf manifold
- Discrete Fourier Calculus and Graph Reconstruction
- Minimality in CR geometry and the CR Yamabe problem on CR manifolds with boundary
- Discrete Heat Equation Morphisms
- CR PRODUCTS IN LOCALLY CONFORMAL KAHLER MANIFOLDS