A certain class of Poincare series on Sp n, II
スポンサーリンク
概要
- 論文の詳細を見る
We compute the Petersson scalar product of certain Poincare series introduced in our previous paper against a Siegel cusp form and show that it can be written as a certain averaged cycle integral. This generalizes earlier work by Katok, Zagier and the first named author in the case of genus 1.
- 東北大学の論文
著者
-
Sengupta Jyoti
Shool Of Mathematics T. I. F.r.
-
Kohnen Winfried
Universitat Heidelberg, MathematischesInstitut
-
Kohnen Winfried
Universitat Heidelberg Mathematisches Institut
-
Kohnen Winfried
Universitat Heidelberg Mathematischesinstitut
-
KOHNEN Winfried
Universität Heidelberg Mathematisches Institut
関連論文
- A certain class of Poincare series on Sp n, II
- Fourier coefficients of modular forms(Analytic Number Theory)
- Twisted Maass-Koecher series and spinor zeta functions
- On product expansions of certain modular functions (解析的整数論とその周辺 研究集会報告集)
- Siegel modular forms : estimates for eigenvalues and Fourier coefficients(Analytic Number Theory)
- Asymptotic relations between eigenvalues and Fourier coefficients(Researches on automorphic forms and zeta functions)
- On the Hecke eigenvalues of Siegel cusp forms of genus 2(Automorphic representations, L-functions, and periods)
- Estimating Fourier coefficients of Siegel modular forms (Analytic Number Theory and Surrounding Areas)
- AN EXPLICIT FORMULA FOR LOCAL SINGULAR SERIES POLYNOMIALS