Combinatorial intersection cohomology for fans
スポンサーリンク
概要
- 論文の詳細を見る
We investigate minimal extension sheaves on arbitrary (possibly non-rational) fans as an approach toward a combinatorial "virtual" intersection cohomology. These are flabby sheaves of graded modules over a sheaf of polynomial rings, satisfying three relatively simple axioms that characterize the equivariant intersection cohomology sheaves on toric varieties. As in "classical" intersection cohomology, minimal extension sheaves are models for the pure objects of a "perverse category"; a Decomposition Theorem holds. The analysis of the step from equivariant to non-equivariant intersection cohomology of toric varieties leads us to investigate ``quasi-convex" fans (generalizing fans with convex or "co-convex" support), where our approach yields a meaningful virtual intersection cohomology. We characterize such fans by a topological condition and prove a version of Stanley's "Local-Global" formula relating the global intersection Poincare polynomial to local data. Virtual intersection cohomology of quasi-convex fans is shown to satisfy Poincare duality. To describe the local data in terms of the global data for lower-dimensional complete polytopal fans as in the rational case, one needs a ``Hard Lefschetz" type result. It requires a vanishing condition that is valid for rational cones, but has not yet been proven in the general case.
- 東北大学の論文
著者
-
Fieseler Karl-heinz
Matematiska Institutionen Uppsala Universitet
-
Barthel Gottfried
Fachbereich Mathematik und Statistik, Universitat Konstanz
-
Brasselet Jean-Paul
IML-CNRS
-
Kaup Ludger
Fachbereich Mathematik und Statistik, Universitat Konstanz
-
Brasselet Jean-Paul
IMLCNRS
-
Barthel Gottfried
Fachbereich Mathematik Und Statistik Universitat Konstanz
-
Kaup Ludger
Fachbereich Mathematik Und Statistik Universitat Konstanz
関連論文
- Combinatorial duality and intersection product: A direct approach
- Combinatorial intersection cohomology for fans
- Diviseurs invariants et homomorphisme de Poincare de varietes toriques complexes
- Indices of vectorfields and residues of singular foliations after Nash transformation(Topology of Holomorphic Dynamical Systems and Related Topics)