Birkhoff decomposition and Iwasawa decomposition for loopgroups
スポンサーリンク
概要
- 論文の詳細を見る
Representations of arbitrary real or complex invertible matrices as products of matrices of special type have been used for many purposes. The matrix form of the Gram-Schmidt orthonormalization procedure and the Gauss elimination process are instances of such matrix factorizations. For arbitrary, finite-dimensional, semisimple Lie groups, the corresponding matrix factorizations are known as Iwasawa decomposition and Bruhat decomposition. The work of Matsuki and Rossmann has generalized the Iwasawa decomposition for the finite-dimensional, semisimple Lie groups. In infinite dimensions, for affine loop groups/Kac-Moody groups, the Bruhat decomposition has an, also classical, competitor, the Birkhoff decomposition. Both decompositions (in infinite dimensions), the Iwasawa decomposition and the Birkhoff decomposition, have had important applications to analysis, e.g., to the Riemann-Hilbert problem, and to geometry, like to the construction of harmonic maps from Riemann surfaces to compact symmetric spaces and compact Lie groups. The Matsuki/Rossmann decomposition has been generalized only very recently to untwisted affine loop groups by Kellersch and facilitates the discussion of harmonic maps from Riemann surfaces to semisimple symmetric spaces. In the present paper we extend the decompositions of Kellersch and Birkhoff for untwisted affine loop groups to general Lie groups. These generalized decompositions have already been used in the discussion of harmonic maps from Riemann surfaces to arbitrary loop groups [2].
- 東北大学の論文
著者
-
Balan Vladimir
Department Mathematicsi Politehnica University Of Bucharest
-
Balan Vladimir
Department Mathematics I Politehnica University Of Bucharest
-
Dorfmeister Josef
Department Of Mathematics Tu-muenchen
関連論文
- Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups
- Birkhoff decomposition and Iwasawa decomposition for loopgroups
- Riemann-Hilbert Factorizations and Inverse Scattering for the AKNS-Equation with $L^1$-Potentials I
- Principal Fiber Bundle Interpretation of the KP-Hierarchy
- On symmetries of constant mean curvature surfaces, Part I: General theory
- CMC AND MINIMAL SURFACES IN FINSLER SPACES
- AN ALGEBRAIC APPROACH TO ISOPARAMETRIC HYPERSURFACES IN SPHERES I
- AN ALGEBRAIC APPROACH TO ISOPARAMETRIC HYPERSURFACES IN SPHERES II