On the L^2 form spectrum of the Laplacian on nonnegatively curvedmanifolds
スポンサーリンク
概要
- 論文の詳細を見る
Let $(M,g o)$ be a complete, noncompact Riemannian manifold with a pole, and let $g=fg o$ be a conformally related metric. We obtain conditions on the curvature of $g o$ and on $f$ under which the Laplacian on $p$-forms on $(M,g)$ has no eigenvalues.
- 東北大学の論文
著者
-
RIGOLI Marco
Dipartimento di Matematica Universita di Milano
-
Rigoli Marco
Dipartimento Di Matematicae Applicazioni Universita Di Milano-bicocca
-
Setti Alberto
Dipartimento di ScienzeChimiche, Fisiche e Matematiche, Universitadell'Insubria-Como
-
Setti Alberto
Dipartimento Di Scienzechimiche Fisiche E Matematiche Universitadell'insubria-como
関連論文
- Elliptic differential inequalities with applications to harmonic maps
- Gradient bounds and Liouville's type theorems for the Poisson equation on complete Riemannian manifolds
- On the L^2 form spectrum of the Laplacian on nonnegatively curvedmanifolds