(1, 2)-symplectic structures on flag manifolds
スポンサーリンク
概要
- 論文の詳細を見る
By using moving frames and directred digraphs, we study invariant (1,2)-symplectic structures on complex flag manifolds. Let $F$ be a flag manifold with height $k-1$. We show that there is a $k$-dimensional family of invariant (1,2)-symplectic metrics of any parabolic structure on $F$. We also prove any invariant almost complex structure $J$ on $F$ with height 4 admits an invariant (1,2)-symplectic metric if and only if $J$ is parabolic or integrable.
- 東北大学の論文
著者
-
Negreiros Caio
Instituto De Matematica Estatistica E Computacao Cientica Universidade Estadual De Campinas
-
Mo Xiaohuan
School of Mathematical Sciences, Peking University
-
Mo Xiaohuan
School Of Mathematical Sciences Peking University