On rational points of curves of genus 3 over finite fields
スポンサーリンク
概要
- 論文の詳細を見る
Let F be any finite field with q elements such that q is the square of an odd prime. For each extension F of odd (resp. even) degree over F, we shall show that there exists a curve of genus 3 defined over F such that the number of F-rational points attains the maximum (resp. minimum) of the Weil estimation.
- 東北大学の論文
著者
関連論文
- On zeta functions associated to symmetric matrices III : An explicit form of L-functions
- On rational points of curves of genus 3 over finite fields
- Positivity of Eta Products : a Certain Case of K. Saito's Conjecture
- Taylor Expansions of Jacobi Forms and Applications to Explicit Structures of Degree Two
- Holonomic systems of Gegenbauer type polynomials of matrix arguments related with Siegel modular forms