An integral basis for a field generated by l-th roots of rational numbers over the rational number field
スポンサーリンク
概要
- 論文の詳細を見る
Let Q be the rational number field, l an odd prime number, n a positive integer, and m_i(1 ≤ i ≤ n) rational numbers. In this paper we find an integral basis for a field K={Q}(m<SUP>1/l</SUP>_1, m<SUP>1/l</SUP>_2, ..., m<SUP>1/l</SUP>_n) and determine the discriminant of K. When n=2 and m_1=1, an integral basis for K was found by Komatsu [1].
- 東北大学の論文