Strong Ion Accelerating by Collisionless Magnetosonic shock Wave Propagating Perpendicular to a Magnetic Field
スポンサーリンク
概要
- 論文の詳細を見る
A 2-1/2 dimensional fully relativistic, fully electromagnetic particle code is used to study a time evolution of nonlinear magnetosonic pulse propagating in the direction perpendicular to a magnetic field. The pulse is excited by an instantaneous piston acceleration, and evolves totally self-consistently. Large amplitude pulse traps some ions and accelerates them parallel to the wave front. They are detrapped when their velocities become of the order of the sum of the E×B drift velocity and the wave phase velocity, where E is the electric field in the direction of wave propagation. The pulse develops into a quasi-shock wave in a collisionless plasma by a dissipation due to the resonant ion acceleration. Simple nonlinear wave theory for a cold plasma well describes the shock properties observed in the simulation except for the effects of resonant ions. In particular, magnitude of an electric potential across the shock region is derived analytically and is found to be in good agreement with our simulations. The potential jump is proportional to B^2,and hence the E×B drift velocity of the trapped ions is proportional to B.
- 核融合科学研究所の論文
著者
関連論文
- Particle Simulation Studies on Behaviour of Rapidly-Expanding High-Beta Plasma Column in a Uniform Magnetic Field
- Particle Simulation Studies on Behavior of Laser-Produced High-β Plasma in a Magnetic Field
- Magnetic Field Generation Due to Resonance Absorption
- Propagation of Nonlinear Ion Acoustic Wave with Generation of Long-Wavelength Waves
- Monte Carlo Simulation of Plasma Confinement in Mirror and Cusp Fields
- COMPUTER SIMULATIONS ON THE NONLINEAR FREQUENCY SHIFT AND NONLINEAR MODULATION OF ION-ACOUSTIC WAVES
- PROMPT SIMULTANEOUS ACCELERATION OF PROTONS AND ELECTRONS TO RELATIVISTIC ENERGIES BY SHOCK WAVES IN SOLAR FLARES
- Relativistic Shock Wave
- Strong Ion Accelerating by Collisionless Magnetosonic shock Wave Propagating Perpendicular to a Magnetic Field
- A Solitary Wave of a Relativistic Magnetosonic Wave Propagating Perpendicularly to a Magnetic Field
- Production of Highly Relativistic Ions and Electrons by Quasi-Perpendicular Magnetosonic Shock Waves
- ACCELERATION OF ENERGETIC IONS BY A NEARLY PERPENDICULAR INTERPLANETARY SHOCK