Deflagration Wave Formed by Ion Beam : Part II. In Spherical Target
スポンサーリンク
概要
- 論文の詳細を見る
Analyses are given for structures of deflagration waves formed by ion beams in spherical targets. The singularity at the sonic point disappears in the spherical target if the beam pressure is in balance with the plasma pressure. The expanding supersonic flow of the background plasma can be connected with the subsonic flow in the core of the target through the deflagration wave. The length and the strength of the deflagration wave in the spherical target is comparable with the corresponding ones in the slab target.
- 核融合科学研究所の論文
著者
-
Niu K.
Research Information Center Institute Of Plasma Physics Nagoya University:(present Adress)tokyo Inst
-
Niu K.
Research Information Center Institute Of Plasma Physics Nagoya University:tokyo Institute Of Technol
-
Abe T.
Research Information Center, Institute of Plasma Physics, Nagoya University
-
Kasuya K.
Research Information Center, Institute of Plasma Physics, Nagoya University
-
Tamba M.
Research Information Center, Institute of Plasma Physics, Nagoya University
-
Tamba M.
Research Information Center Institute Of Plasma Physics Nagoya University:the Institute Of Physical
-
Niu K.
Research Information Center Institute Of Plasma Physics Nagoya University
-
Kasuya K.
Research Information Center Institute Of Plasma Physics Nagoya University:tokyo Institute Of Technology
関連論文
- Deflagration Wave Formed by Ion Beam : Part II. In Spherical Target
- Deflagration Wave Formed by Ion Beam : Part I. In Slab Target
- LIB PROPAGATION IN FUSION REACTOR
- Sausage Instability of Z-Discharged Plasma Channel in LIB-Fusion Device
- Formation of Z-Discharged Plasma Channel in LIB-Fusion Device
- Anomalous Viscosity in Turbulent Plasma due to Electromagnetic Instability. II.
- Anomalous Viscosity due to Weak Turbulence in Imploding Target Plasma
- Anomalous Viscosity in Turbulent Plasma due to Electromagnetic Instability. I.
- Electromagnetic instability and stopping power of plasma for relativistic electron beams
- Possibility of Stable Implosion of Structured Pellet II
- Anomalous Deceleration of Light Ion Beam in Plasma of Inertial Confinement Fusion
- Numerical Analysis on Implosion of Laser-Driven Target Plasma
- Thermal Conductivity in a Laser-Driven Pellet
- Electron-Flux Limitation Due to Ion Acoustic Instability
- Possibility of Stable Implosion of Structured Pellet I
- Numerical Analysis on Stability of Laser-Driven-Pellet Implosion
- Thermal-flux reduction by electromagnetic instabilities
- Analytical Model for Super-Compression of Multi-Structured Pellet