Computational Studies of Voltage in RF Magnetron Discharge
スポンサーリンク
概要
- 論文の詳細を見る
Plasma processing is widely used in the mass production of industrial devices. A RF sputtering can be used for insulator and dielectric materials. When capacitive coupled plasma (CCP) is used for RF sputtering, the state of discharge has to be researched. The relationship between the ratio of areas of the electrodes and the ratio of DC bias voltages in magnetron sputtering was investigated, because it determines the acceleration voltage for ions, and may play an important role in sputtering. The imperfection of plasma control leads to problems in mass production. The relationship between the ratio of areas of the electrodes and the ratio of DC bias voltages in magnetron sputtering was investigated in this study. Moreover, the simulation results of some models that are different in chamber size or gas pressure were obtained. These results were compared with the experimental results and the difference was discussed. The results of simulations regarding the relationship between a bias voltage of a target ($V_{\text{dc}}$) and gas pressure with the same chamber, and between $V_{\text{dc}}$ and chamber size correspond to the experimental results qualitatively. However, the changes are much less than in the experiments, especially with respect to chamber size. Considering distributions of neutral gases and radicals, the accuracy for $V_{\text{dc}}$ may be improved.
- Published by the Japan Society of Applied Physics through the Institute of Pure and Applied Physicsの論文
- 2005-12-15
著者
-
YAMAMOTO Masahiro
Production Engineering Laboratory, Panasonic Corporation
-
Ogata Shigenobu
Center For Atomic And Molecular Technologies Graduate School Of Osaka University
-
Shibutani Yoji
Department Of Mechanical Engineering And Systems Osaka University
-
Nakashima Seiji
Production Core Engineering Laboratory Matsushita Electric Industrial Co. Ltd.
-
Yamanishi Hitoshi
Production Core Engineering Laboratory, Matsushita Electric Industrial Co., Ltd., 2-7 Matsuba-cho, K
-
Yamanishi Hitoshi
Production Core Engineering Laboratory Matsushita Electric Industrial Co. Ltd.
-
Yamamoto Masahiro
Production Core Engineering Laboratory Matsushita Electric Industrial Co. Ltd.
関連論文
- Influence of Size and Number of Nanocrystals on Shear Band Formation in Amorphous Alloys
- Formation of Atomistic Island in Al Film Growth by Kinetic Monte Carlo
- Enhancement of Plasticity of Highly Density-Fluctuated Cu-Zr Amorphous Alloy
- MOLECULAR DYNAMICS STUDY ON DUCTILE CRACK PROCESS : Effect of Temperature on Dislocation Nucleation
- Effects of Atomic Deviatoric Distortion on Local Glass Transition of Metallic Glasses
- Minimum Energy Motion and Core Structure of Pure Edge and Screw Dislocations in Aluminum
- High-Pressure Elasticity and Auxetic Property of α-Cristobalite
- ATOMIC-LEVEL DESCRIPTION OF MATERIAL STRENGTH OF α-Fe(Special Issue on Hierarchical Estimations of Materials Strength)
- Effects of Atomic Size for Voronoi Tessellation Technique on Binary and Ternary Systems of Metallic Glasses
- Numerical Analysis for Acoustic Resonance of One-Dimensional Nonlinear Elastic Bar
- Computational Studies of Voltage in RF Magnetron Discharge
- Acoustic Resonance of a Two-Dimensional Isotropic Medium Studied Using Airy Stress Function (Special Issue : Ultrasonic Electronics)
- Low Temperature Elastic Constants and Piezoelectric Coefficients of LiNbO and LiTaO : Resonant Ultrasound Spectroscopy Measurement and Lattice Dynamics Analysis (Special Issue : Ultrasonic Electronics)
- MESOSCOPIC DYNAMICS ON DISLOCATION PATTERNING IN FATIGUED MATERIAL BY CELLULAR AUTOMATA(Special Issue on Hierarchical Estimations of Materials Strength)
- Higher Accurate Estimation of Axial and Bending Stiffnesses of Plates Clamped by Bolts
- Formation of Prismatic Dislocation Loop around a Spherical Inclusion Using Level Set Dislocation Dynamics
- Non-Destructive Observations of Internal Micro-Defects Using Scanning Electron-Induced Acoustic Microscope
- Equivalent Stiffness Evaluations of Clamped Plates in Bolted Joints under Loading
- Modeling of Heteroepitaxial Thin Film Growth by Kinetic Monte Carlo
- Dislocation Nucleation and Interaction under Nanoindentation in Single Crystalline Al and Cu: Molecular Dynamics Simulations
- Large Deformability of 2D Framed Structures Connected by Flexible Joints
- Theoretical Investigation of the Displacement Burst Observed in Nanoindentation by Collective Dislocation Loops Nucleation Model
- Hybridized Atomistic Modeling of Migration Observed on Thin Film Surface by Incident Particles
- Transfer and Incorporation of Dislocations to Σ3 Tilt Grain Boundaries under Uniaxial Compression