Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities
スポンサーリンク
概要
- 論文の詳細を見る
Given a quasi-subaditive operator T:L<SUB>0</SUB>(μ)→ L<SUB>0</SUB>(v), we want to study mapping properties of interpolation type for which the following modular inequality holds \[∈t_{\mathscr{N}}P(|Tf(x)|)dv(x)≤∈t_{\mathscr{M}}Q(|f(x)|)dμ(x) \] where P and Q are modular functions. These results generalize the classical Marcinkiewicz interpolation theorem.
- 社団法人 日本数学会の論文
- 2003-04-01
著者
-
Carro Maria
Departament De Matematica Aplicada I Analisi Facultat De Matematiques Universitat De Barcelona
-
NIKOLOVA Ludmila
Department of Mathematics Sofia University
関連論文
- Modular inequalities for the Calderon operator
- Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities