Modular inequalities for the Calderon operator
スポンサーリンク
概要
- 論文の詳細を見る
If $P,Q:[0,\infty)\to$ are increasing functions and $T$ is the Calderon operator defined on positive or decreasing functions, then optimal modular inequalities $\int P(Tf)\leq C\int Q(f)$ are proved. If $P=Q$, the condition on $P$ is both necessary and sufficient for the modular inequality. In addition, we establish general interpolation theorems for modular spaces.
- 東北大学の論文
著者
-
Heinig Hans
Department Of Mathematics Mcmaster University
-
Carro Maria
Departamento de Matematica Aplicada y, Analisis, Universidad de Barcelona
-
Carro Maria
Departamento De Matematica Aplicada Y Analisis Universidad De Barcelona
-
Carro Maria
Departament De Matematica Aplicada I Analisi Facultat De Matematiques Universitat De Barcelona
関連論文
- Modular inequalities for the Calderon operator
- Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities