Feasibility Study on Subcriticality Monitoring with a Digital Reactivity Meter
スポンサーリンク
概要
- 論文の詳細を見る
A conventional digital reactivity meter is based on a simple principle to solve inverse point reactor kinetics equations and it can monitor reactivity continuously on a real time basis. Then, feasibility was studied for a conventional digital reactivity meter to be used as a subcriticality monitor. It was necessary to overcome some problems; for example, the applicability of the point reactor kinetics equations must be verified for the system where neutron distribution is dependent on the subcriticality. We showed that the problems can be solved or can be taken into account. The subcriticality calculated by the reactivity meter might not be accurate for the measurement of the actual value of the subcriticality itself, however, it is accurate enough for the purpose of subcriticality monitoring. We believe that the monitoring on a real time basis is more important for subcriticality monitoring than the accuracy of the value of the monitored subcriticality. Based on the study, we proposed that a digital reactivity meter can be used as a subcriticality monitor.
- 社団法人 日本原子力学会の論文
- 2002-11-25
著者
-
Tsuji Masashi
Department Of Nuclear Engineering Graduate School Of Engineering Hokkaido University
-
SHIMAZU Yoichiro
Department of Nuclear Engineering, Graduate School of Engineering, Hokkaido University
-
SUZUKI Nobuhide
Department of Nuclear Engineering, Graduate School of Engineering, Hokkaido University
-
Matsuda Takeshi
Department Of Materials Science Kitami Institute Of Technology
-
Tsuji Masashi
Division Of Molecular Chemistry Graduate School Of Engineering Hokkaido University
-
Tsuji Masashi
Department Of Electrical Engineering Graduate School Of Engineering Tokyo University Of Agriculture
-
Suzuki Nobuhide
Department Of Nuclear Engineering Graduate School Of Engineering Hokkaido University
-
Shimazu Y
Hokkaido Univ. Sapporo
-
Shimazu Yoichiro
Department Of Energy And Environmental Systems Graduate School Of Engineering Hokkaido University
関連論文
- Encapsulation-release property of amphiphilic hyperbranched d-glucan as a unimolecular reverse micelle
- Chiraluty Induction in Cyclopolymerization XVI. Synthesis of Optically Active Poly(methyl acrylate-co-dimethyl fumarate) by Radical Cyclopolymerization of Asymmetrical Nonconjugated Diene Having Chiral pentanediol
- Enantiomer-Selective Radical Polymerization of rac-2,4-Pentanediyl Dimethacrylate by 2,2'-Azobisisobutyronitrile/Copper(II) Trifluoromethanesulfonate/Chiral Diamine as Asymmetric Reverse Atom Transfer Radical Polymerization Initiating System
- Pentane Isomerization over Molybdenum Oxide Prepared by H_2 Reduction of a Hydrogen Molybdenum Bronze
- Effect of the Flow Rate of H_2 in the Reduction Process on the Physical and Catalytic Properties of H_2-Reduced Pt/MoO_3
- Effect of H_2 Flow Rate in Reduction Process on the Catalytic Properties of Reduced MoO_3
- Dehydration of 2-Propanol over Molybdenum Oxide Treated with Hydrogen
- Catalytic Properties of Ni-MoO_3 for the Isomerization of Heptane
- Hyperbranched 5,6-glucan as reducing sugar ball
- Feasibility Study for Evaluation of Control Rod Worth in Pressurized Water Reactors using Neutron Count Rate during a Control Rod Drop Testing
- Development of the Hierarchical Domain Decomposition Boundary Element Method for Solving the Three-Dimensional Multiregion Neutron Diffusion Equations
- Stability Monitoring for BWR based on Singular Value Decomposition Method using Artificial Neural Network
- Subcriticality Measurement by Neutron Source Multiplication Method with a Fundamental Mode Extraction
- Feasibility Study on Subcriticality Monitoring with a Digital Reactivity Meter
- Evaluation of Decay Ratio of BWRs using Singular Value Decomposition Method
- A Higher Harmonics Analysis of 3-D Neutron Diffusion Equation Using the Hierarchical Domain Decomposition Boundary Element Method
- Characteristics of MoO_3 Reduced with H_2 at the Different Flow Rates of H_2
- Subcriticality Measurement of Pressurized Water Reactors during Criticality Approach using a Digital Reactivity Meter
- Subcriticality Measurement of Pressurized Water Reactors by the Modified Neutron Source Multiplication Method
- The Effect of Neutron Source Distribution on Subcriticality Measurement of Pressurized Water Reactors Using the Modified Neutron Source Multiplication Method
- High-Speed Parallel Solution of the Neutron Diffusion Equation with the Hierarchical Domain Decomposition Boundary Element Method Incorporating Parallel Communications
- Parallelization of the Hierarchical Domain Decomposition Boundary Element Method Applied to Multiregion Problem of Neutron Diffusion Equations
- Subcriticality Monitoring with a Digital Reactivity Meter
- Solar Energetic Particles Studied from Yohkoh Gamma-Ray Observations
- Accurate Estimation of the Number of Weak Coherent Signals
- Some Technical Issues on Continuous Subcriticality Monitoring by a Digital Reactivity Meter during Criticality Approach
- Monitoring and Control of Radial Xenon Oscillation in PWRs by a Three-Radial-Offset Concept
- Small PWR Using Coated Particle Fuel of Thorium and Plutonium
- Continuous Guidance Procedure for Xenon Oscillation Control
- Application of Three Axial Offsets Trajectory Method for Load Follow Operation Control in PWRs
- Errors in the Estimated Neutron Source and Gamma Source Strengths for Reactivity Measurement and the Influence on the Measured Reactivity
- A Feasibility Study on Wavelet Transform for Reactivity Coefficient Estimation
- Analysis on Calculated Reactivity Error Caused by Inaccuracy of Sampling Intervals
- Stability Analysis of BWRs Using Bifurcation Theory.
- Decoupling Control of Nonlinear Coupled Core Reactor
- Suboptimal control of pressurized water reactor power plant using approximate model-following method.
- Approximated decoupling control of coupled-core nuclear reactor.
- Fuel cycle cost analysis on molten-salt reactors.