Homogeneous surface in the three-dimensional projective geometry
スポンサーリンク
概要
- 論文の詳細を見る
Using an algebraic analog of Cartans method of moving frames and the complete classification of two-dimensional subalgebras in \mathfrak{s}\mathfrak{l}(4, \bm{R}), we describe all locally homogeneous surfaces in \bm{R}P<SUP>3</SUP>.
- 社団法人 日本数学会の論文
著者
-
Dillen Franki
Katholieke Universiteit Leuven Departement Wiskunde
-
Dillen Franki
Kathokieke Universiteit Leuven
-
DOUBROV Boris
International Sophus Lie Centre
-
KOMRAKOV Boris
International Sophus Lie Centre
-
RABINOVICH Maxim
International Sophus Lie Centre
関連論文
- Characterizing a class of totally real submanifolds of S^6 by their sectional curvatures
- Two equivariant totally real immersions into the nearly Kahler 6-sphere and their characterization
- COMPACT HYPERSURFACES DETERMINED BY A SPECTRAL VARIATIONAL PRINCIPLE
- Affine hypersurfaces with parallel cubic form
- Homogeneous surface in the three-dimensional projective geometry
- Quasi-umbilical, locally strongly convex homogeneous affine hypersurfaces
- The classification of projectively homogeneous surfaces. II
- Quasi-Einstein totally real submanifolds of the nearly Kaehler 6-sphere