Characterizing a class of totally real submanifolds of S^6 by their sectional curvatures
スポンサーリンク
概要
著者
-
Chen Bang-yen
Department Of Mathematics Michigan State University
-
Dillen Franki
Katholieke Universiteit Leuven, Departement Wiskunde
-
Verstraelen Leopold
Katholieke Universiteit Leuven, Departement Wiskunde
-
Vrancken Luc
Katholieke Universiteit Leuven, Departement Wiskunde
-
Vrancken Luc
Katholieke Universiteit Leuven
-
Verstraelen Leopold
Katholieke Universiteit Leuven Departement Wiskunde
-
Dillen Franki
Kathokieke Universiteit Leuven
関連論文
- Characterizing a class of totally real submanifolds of S^6 by their sectional curvatures
- Two equivariant totally real immersions into the nearly Kahler 6-sphere and their characterization
- COMPACT HYPERSURFACES DETERMINED BY A SPECTRAL VARIATIONAL PRINCIPLE
- On normal connection of Kaehler submanifolds
- Lagrangian surfaces in complex Euclidean plane via spherical and hyperbolic curves
- COMPLETE CLASSIFICATION OF LORENTZ SURFACES WITH PARALLEL MEAN CURVATURE VECTOR IN ARBITRARY PSEUDO-EUCLIDEAN SPACE
- Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms
- Lagrangian minimal isometric immersions of a Lorentzian real spaceform into a Lorentzian complex space form
- Biharmonic surfaces in pseudo Euclidean spaces
- On classification of some surfaces of revolution of finite type
- Lagrangian surfaces of constant curvature in complex Euclidean plane
- Representation of flat Lagrangian H-umbilical submanifolds in complex Euclidean spaces
- Affine hypersurfaces with parallel cubic form
- Homogeneous surface in the three-dimensional projective geometry
- Quasi-umbilical, locally strongly convex homogeneous affine hypersurfaces
- The classification of projectively homogeneous surfaces. II
- Quasi-Einstein totally real submanifolds of the nearly Kaehler 6-sphere
- Local rigidity theorems of 2-type hypersurfaces in a hypersphere : Dedicated to Professor Tadashi Nagano on his 60th birthday
- Maslovian Lagrangian immersions of real space forms into complex space forms
- Complex extensors and Lagrangian submanifolds in complex Euclidean spaces
- Some new obstructions to minimal and Lagrangian isometric immersions Dedicated to Professor Tadashi Nagano on the occasion of his seventieth birthday
- Classification of flat slant surfaces in complex Euclidean plane : In memory of Professor Seiichi Yamaguchi
- A cohomology class for totally real surface in C^2
- On the concircular curvature tensor, the projective curvature tensor andthe Einstein curvature tensor of Bochner-Kaehler manifolds
- Stationary 2-type surfaces in a hypersphere
- Manifolds with vanishing Weyl or Bochner curvature tensor
- Harmonic metrics, harmonic tensors, and Gauss maps