知沢 清之 | 管理工学研究所
スポンサーリンク
概要
関連著者
-
知沢 清之
管理工学研究所
-
知沢 清之
武蔵工業大学数学教室
-
西野 寿一
武蔵工業大学知識工学部
-
三木 秀夫
慶應義塾大学理工学部
-
知沢 清之
武蔵工業大学知識工学部
-
垣内 伸彦
College of Gen.Education, Aichi University
-
垣内 信彦
愛知大学 国際コミュニケーション学部
-
西野 寿一
慶応義塾大学
-
三木 秀夫
慶応義塾大学理工学部
-
池上 宜弘
Dept. Of Math. College Of Humanities And Sciences Nihon Univ.
-
知沢 清之
Dept. of Math., Faculty of Engineering, Musashi Institute of Technology
-
知沢 清之
Dep. of Math., Musashi Institute of Technology
-
知沢 清之
Department of Mathematics, Musashi Institute of Technology
-
知沢 清之
慶應大学理工学部
著作論文
- On 4-dim duck solutions with relative stability (双曲型力学系から大自由度力学系へ--RIMS研究集会報告集)
- On the existence of duck solutions in a four-dimensional dynamic economic model (Modeling and Complex analysis for functional equations)
- Duck solutions in a four-dimensional dynamic economic model(Dynamics of functional equations and numerical simulation)
- On the convergency to the limit cycle in the dynamical system of Multivibrator
- ON A LOCAL MODEL FOR FINDING 4-DIM DUCK SOLUTIONS (Dynamics of Functional Equations and Mathematical Models)
- ON THE TRANSVERSALITY CONDITIONS FOR 4-DIM DUCK SOLUTIONS (Modeling and Complex analysis for functional equations)
- A DIRECT METHOD FOR FINDING DUCKS IN $R^4$ (Mathematical models and dynamics of functional equations)
- ON A SLOW-FAST SYSTEM IN $R^6$ WITH DUCKS (Functional Equations in Mathematical Models)
- ON DUCK SOLUTIONS IN $R^4$ (Dynamics of Functional Equations and Related Topics)
- On a Duck and its Winding Number in the Minimal System (力学系理論の新しい展開)
- ON DUCKS IN THE MINIMAL SYSTEM (Singular phenomena of dynamical systems)
- THE COMPLETE DUCKS NOT SATISFYING $S^1$ (Methods and Applications for Functional Equations)
- ON AN $\omega$-INCOMPLETE DUCK AND ITS APPLICATION (Invariants of Dynamical Systems and Applications)
- On another type of ducks in the FitzHugh-Nagumo equation
- On a duck solution and delay in the FitzHugh-Nagumo equation(Structure of Functional Equations and Mathematical Methods)
- ON A QUASI-POTENTIAL IN CONSTRAINED DIFFERENTIAL EQUATIONS(Some Problems on the Theory of Dynamical Systems in Applied Sciences)