Fluidic Sensors Based on Photonic Crystal Fiber Gratings: Impact of the Ambient Temperature
スポンサーリンク
概要
- 論文の詳細を見る
The spectral and thermooptical responses of photonic crystal fiber gratings (PCFGs) infiltrated with gaseous solutions, are investigated theoretically using an accurate semivectorial modal solver combined with exact equations for the reflection response of fiber Bragg gratings. We demonstrate numerically perhaps for the first time, that by an appropriate selection of the design parameters, it is possible to obtain compact sensing platforms based on the shift of the calculated reflectance spectra of the PCFG. Thus, our investigation adds evidence to the potential use of PCFGs as gas/liquid sensors. In addition, we show through a thermooptical sensitivity analysis that this type of sensors can easily meet the requirements for channel allocation in wavelength-division-multiplexing systems with relatively low temperature sensitivity.
- IEEEの論文
IEEE | 論文
- Magnetic and Transport Properties of Nb/PdNi Bilayers
- Supersonic Ion Beam Driven by Permanent-Magnets-Induced Double Layer in an Expanding Plasma
- Surfactant Adsorption on Single-Crystal Silicon Surfaces in TMAH Solution: Orientation-Dependent Adsorption Detected by In Situ Infrared Spectroscopy
- Extended-range FMCW reflectometry using an optical loop with a frequency shifter
- Teachingless spray-painting of sculptured surface by an industrial robot