Shift Selectivity Calculation for Finite-Volume Holograms with Half-Cone Reference Beams
スポンサーリンク
概要
- 論文の詳細を見る
Analytical shift selectivity equations assume an infinite hologram size. When developing a compact holographic storage system, one uses small holograms. From a practical viewpoint, it is better to use reflection type discs, in which the entire optical system, writing and reading objectives, among others, are on the same side of the disc. For reflection-type holographic discs, it is important to use half-cone-shaped reference beams to avoid generating ghost images caused by phase conjugate readout. Our calculations show significant discrepancy between the shift selectivity curves corresponding to the approximated analytic equation and the numerically calculated shift selectivity curves.
- 2006-02-15
著者
-
Richter Hartmut
Deutsche Thomson Ohg
-
PRZYGODDA Frank
Deutsche Thomson OHG
-
TRAUTNER Heiko
Deutsche Thomson OHG
-
Richter Hartmut
Deutsche Thomson-Brandt, Hermann-Schwer-Straße 3 78048 VS-Villingen, Germany
-
Karpati Zoltan
OPTIMAL OPTIK Ltd., Monostori út 10, Budapest H-1031, Hungary
-
Szarvas Gabor
OPTIMAL OPTIK Ltd., Monostori út 10, Budapest H-1031, Hungary
-
Domján László
OPTIMAL OPTIK Ltd., Monostori út 10, Budapest H-1031, Hungary
-
Koppa Pál
Department of Atomic Physics, Technical University Budapest, Budafoki út 8, Budapest H-1111, Hungary
関連論文
- Special Phase Mask and Related Data Format for Page-Based Holographic Data Storage Systems
- Data Detection Methods for Holographic Data Storage Systems
- Shift Selectivity Calculation for Finite-Volume Holograms with Half-Cone Reference Beams
- Spherical Aberration Detection Scheme for Optical Pickup Units Using the Push-Pull Signal
- Two-Dimensional Modulation for Holographic Data Storage Systems
- Shift Selectivity in Common-Aperture Holography
- Investigation of a Reflective Counter-Propagating Holographic Setup
- Material Consumption and Crosstalk Characteristics of Different Holographic Storage Concepts
- Comparison of Coaxial Holographic Storage Arrangements from the $M$ Number Consumption Point of View