微小粒子に対する充填層内二相流圧力損失モデルの開発
スポンサーリンク
概要
- 論文の詳細を見る
Pressure drop tests of single-phase and two-phase flows through a packed bed with micrometer size diameter particles under laminar upward flow conditions were carried out to develop the new pressure drop model for two-phase flow through a packed bed. A new pressure drop model for two-phase flow was developed based on the experimental results with air-water, helium-water flow and each single phase in 50 mm I.D. columns packed with glass beads of 53 μm and 108 μm diameter. From single-phase experimental results, it was confirmed that the Kozeny-Carman equation could be used for the single-phase liquid and the single-phase gas respectively as the pressure drop equations. The new two-phase flow pressure drop model included the Kozeny-Carman equation for single-phase liquid flow pressure drop and a two-phase flow friction multiplier. For the two-phase flow friction multiplier, the Chisholm equation with the Lockhart-Martinelli parameter X2 was used, based on the separated flow model. The Lockhart-Martinelli parameter X2 for the packed bed was derived from the Kozeny-Carman equation. The experimental constant in the two-phase flow friction multiplier in the Chisholm equation was determined from the experimental results. The new model predicted the experimental results of the pressure drop for two-phase flow through a packed bed with micrometer size diameter particles within ±20 % error.
- 一般社団法人 日本機械学会の論文
著者
-
石田 直行
(株)日立製作所 日立研究所
-
堀部 哲史
日立GEニュークリア・エナジー(株)
-
千葉 有
日本原燃(株)技術開発研究所
-
細井 秀章
(株)日立製作所 日立研究所
-
下川原 茂
日本原燃(株)技術開発研究所