高次認知機能の創発とコネクショニストモデル 文法メタ知識による語い学習加速のコネクショニストモデル
スポンサーリンク
概要
- 論文の詳細を見る
In the infancy of human being, it is known that the number of words in speech increase drastically. We think a word acquisition boosting of this period occurs according to the fast mapping in the learning system which is controlled by a meta-information about the language situation. To explain the boosting mechanism, we propose a neural network model of the meta-information that consists of a prediction part, which is a simple recurrent neural network, and a learning evaluation part that controls the fast learning. The learning evaluation part learns a confidence of learning progress as the meta-information from a representation of recurrent network. By a computer simulation study, we show that the meta-information is learnable in spite of its luck of saliency and that the use of meta-information results accelerative learning.
- 日本認知科学会の論文
日本認知科学会 | 論文
- 推論と判断の等確率性仮説 : 思考の対称性とその適応的意味
- 日本語の語順選好は動詞に還元できない文レベルの意味と相関する : 心理実験に基づく日本語の構文研究への提案
- 形容詞と名詞とからなる句の理解の発達過程
- 名詞句と動詞との間の意味的適合度が文の意味表象形成過程に及ぼす効果
- 児童の論理的な読み書き能力を育む思考の相互観察活動 : デジタルペン黒板システムを使用した授業実践から