Cardiac Twitch Properties Simulated by Three States Model.
スポンサーリンク
概要
- 論文の詳細を見る
We examined whether the three states model can explain the systolic and relaxation properties of cardiac muscle to clarify what factors affect these properties. Changing the values of the parameters describing the calcium transient and calcium sensitivity, we estimated the effects of these parameters on the systolic and relaxation properties of twitch contraction. The simulations showed the following four features: 1) An increase in the maximum calcium concentration and calcium sensitivity, and a prolongation of the calcium transient led to an increase in peak tension associated with an increase in the time to peak tension. 2) An increase in myosin ATPase activity led to an increase in peak tension associated with a decrease in the time to peak tension. 3) An increase of peak tension was accompanied by a prolongation of the late systolic period. 4) The constant of the late tension relaxation from 25% to 10% of the peak tension was altered when the crossbridge cycling rate, the resting calcium concentration or the late decline of the calcium transient was changed. The simulation were not contradictory to the experimental results and showed that three state muscle model can provide qualitative descriptions on the systolic and relaxation characteristics of cardiac muscle.
- 東北ジャーナル刊行会の論文
東北ジャーナル刊行会 | 論文
- Effects of Ketamine and Propofol on the Ratio of Interleukin-6 to Interleukin-10 during Endotoxemia in Rats
- α2-Adrenergic Modulation of Glucagon and Insulin Secretions in Sheep
- Molecular Analysis of the Pathogenesis of Autoimmune Insulitis in NOD Mice
- Effects of Thymoxamine in Ouabain-Induced Arrhythmias in Dogs
- T Cell Hypofunctions and Glomerular Sclerotic and Angiogenic Changes Found Both in Rats Received Unilateral Nephrectomy plus Transplantation of Syngeneic Mesenteric Lymph Nodes and in Rats Received Unilateral Nephrectomy plus Splenectomy