Effects of Droplet Distance of Liquid Fuel Droplets on Autoignition.
スポンサーリンク
概要
- 論文の詳細を見る
The present study aims to establish a new experimental methodology (Fine Wire Sustaining method, FWS) and to obtain the fundamental data of spray combustion, the combustion of the liquid fuel droplets cloud. To simulate the fuel droplet cloud, each droplet was suspended at points of intersection of fibers. The geometrically controlled droplets arrayed in two or three dimensions imitated the liquid fuel droplet cloud. The experiments were performed to investigate the flame shape and the ignition delay of the droplet cloud in high temperature. The influences of the surrounding droplets on the flame shape and on the ignition delay of the center droplet were investigated. The droplet distance was the experimental parameters. As a result of the experiments, the combustion characteristic of the droplet cloud could be investigated by using the new experimental methodology. The flame shape of the fuel droplet cloud could be classified by using the group combustion number G. The ignition delay of the center droplets arrayed in three dimensions decreased with the droplet distance to the extent that the flames are isolated.
- 一般社団法人 日本エネルギー学会の論文
一般社団法人 日本エネルギー学会 | 論文
- Modifying Optical Texture of the Coke from Miike Coal
- Development of Petrochemical Industry with the Background of Iron Manufacturing Industry
- タイトル無し
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (II): Combustion of Waste Oil and Exhaust Emission Characteristics by Internal Mixing Twin-Fluid Atomizer:Combustion of Waste Oil and Exhaust Emission Characteristics
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (I): Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer:Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer