Effects of Solvent/Coal Ratio on Slurry Viscosity and Liquefaction Reaction of Victorian Brown Coal.
スポンサーリンク
概要
- 論文の詳細を見る
The effects of solvent/coal ratio on slurry viscosity and liquefaction reaction of Victorian brown coal were investigated using a solvent derived from the primary hydrogenation of the two-stage brown coal liquefaction (BCL) process. The liquefaction reaction was carried out in the presence of iron/sulfur catalyst with an autoclave of 5 L. The amount of catalyst added was 3 wt% on moisture and ash free (maf) coal as Fe, and the S/Fe atomic ratio was 1.2. The slurry viscosity was measured under N<SUB>2</SUB> pressure with a high temperature and pressure viscometer.<BR>The distillate yield (b.p.<420°C) and hydrogen efficiency increased and the C<SUB>1</SUB>-C<SUB>4</SUB> yield decreased with a decrease in the solvent/coal (maf) ratio ranging from 3.0 to 1.7. The effects of the ratio was large at high temperature (460°C) compared to that at low temperature (430°C). The slurry viscosity increased with the decrease in the ratio and decreased monotonically as temperature increased.<BR>These results show that the solvent/coal ratio of the feed slurry in the brown coal liquefaction process should be small when the slurry can be transported by a pump for the liquefaction because it improves the efficiencies of processing, hydrogen consumption and distillate yield.
- 一般社団法人 日本エネルギー学会の論文
一般社団法人 日本エネルギー学会 | 論文
- Modifying Optical Texture of the Coke from Miike Coal
- Development of Petrochemical Industry with the Background of Iron Manufacturing Industry
- タイトル無し
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (II): Combustion of Waste Oil and Exhaust Emission Characteristics by Internal Mixing Twin-Fluid Atomizer:Combustion of Waste Oil and Exhaust Emission Characteristics
- Study on Development of Waste Oil Combustion Burner for Energy Saving and Low-Pollution (I): Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer:Atomization of High-Viscous Liquid Jet by Internal Mixing Twin-Fluid Atomizer