Development of NEural network simulator for structure-activity COrrelation of molecules:Neco. (3). Performance Evaluation of Self-organized Network and Perceptron.:Performance Evaluation of Self-organized Network and Perceptron
スポンサーリンク
概要
- 論文の詳細を見る
A Self-organized network model for high-speed learning was included in the perceptron type Neural network simulator for structure-activity correlation of molecules : Neco. The performance of the Self-organized network model was compared with that of perceptron using twodimensional exclusive OR problem and the relationship between <SUP>13</SUP>C-NMR shift and the conformation of norbornane. For practical use, the speed for convergence of the Self-organized network is almost four times faster than that of perceptron though perceptron gives higher order convergence. In the case of <SUP>13</SUP>C-NMR shift and conformation of norbornane, a Self-organized network seems to show strong nonlinear classification in comparsion with perceptron.
- 日本コンピュータ化学会の論文
日本コンピュータ化学会 | 論文
- 計算機シミュレーションを用いたRNA結合タンパク質PumilioのRNA結合様式の研究
- エストロゲン受容体のアミノ酸変異によるエストラジオール結合エネルギーの変化
- 分割法による大規模共役系のケクレ構造の総数とPauling Bond Orderの計算
- SrTiO_3とCaTiO_3のTi-K XANESスペクトルにおける低エネルギーピークの起源
- 分子骨格操作に伴う分子軌道変化の等値面リアルタイム描画システム