翌日需要曲線予測手法と精度向上の検討
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a result of study for a next day electric load curve forecasting method and its accuracy improvement. Electric load curve forecasting is one of the most important tasks for insuring reliability and economic electric power supply. Because start-stop time of generators is decided using the load curve forecasting. This paper proposes three methods. First one is a new structure of forecasting models. It consists of single-output neural networks and a multi-output neural network. Second one corrects load curve using the operation information of commercial-scale utility customers. Last one selects the accuracy forecasting models adaptively using recent forecasting error. Input data of each forecasting model is different type of weather information. The simulation results reveal the effectiveness of the proposed methods for a next day electric load curve forecasting.
著者
-
飯坂 達也
富士電機(株)
-
宮下 和稔
中部電力(株)
-
勝野 徹
富士電機(株)
-
島崎 祐一
富士電機(株)
-
島崎 祐一
富士電機(株)技術開発本部
-
宮田 尚朋
中部電力(株)
-
遠藤 隆幸
中部電力(株)
関連論文
- An Insolation Forecasting Method by Partial Least Squares and a Confidence Interval Estimating Method
- デマンドレスポンスを考慮した需要予測へのJITモデリングの適用
- マイクログリッド向け需給制御システムの開発
- 翌日需要曲線予測手法と精度向上の検討